Machine learning for civil & environmental engineers: a practical approach to data-driven analysis, explainability, and causality
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, New Jersey
Wiley
2023
|
Ausgabe: | 1st ed |
Schlagworte: | |
Online-Zugang: | DE-91 |
Beschreibung: | 1 Online-Ressource (xix, 588 Seiten) Illustrationen, Diagramme |
ISBN: | 9781119897620 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049433128 | ||
003 | DE-604 | ||
005 | 20240517 | ||
007 | cr|uuu---uuuuu | ||
008 | 231127s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781119897620 |c PDF |9 978-1-119-89762-0 | ||
035 | |a (ZDB-30-PQE)EBC7269903 | ||
035 | |a (ZDB-30-PAD)EBC7269903 | ||
035 | |a (ZDB-89-EBL)EBL7269903 | ||
035 | |a (OCoLC)1390560489 | ||
035 | |a (DE-599)BVBBV049433128 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 006.31 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Naser, M. Z. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine learning for civil & environmental engineers |b a practical approach to data-driven analysis, explainability, and causality |c M.Z. Naser |
246 | 1 | 3 | |a Machine learning for civil and environmental engineers |
264 | 1 | |a Hoboken, New Jersey |b Wiley |c 2023 | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (xix, 588 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Machine learning | |
650 | 4 | |a Civil engineering-Data processing | |
650 | 0 | 7 | |a Bautechnik |0 (DE-588)4004955-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Bautechnik |0 (DE-588)4004955-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |a Naser, M. Z. |t Machine Learning for Civil and Environmental Engineers |d Newark : John Wiley & Sons, Incorporated,c2023 |n Druck-Ausgabe, Hardcover |z 978-1-119-89760-6 |
912 | |a ZDB-30-PQE | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=7269903 |l DE-91 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf_2024 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1805072019491913728 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Naser, M. Z. |
author_facet | Naser, M. Z. |
author_role | aut |
author_sort | Naser, M. Z. |
author_variant | m z n mz mzn |
building | Verbundindex |
bvnumber | BV049433128 |
classification_rvk | ST 300 |
collection | ZDB-30-PQE |
ctrlnum | (ZDB-30-PQE)EBC7269903 (ZDB-30-PAD)EBC7269903 (ZDB-89-EBL)EBL7269903 (OCoLC)1390560489 (DE-599)BVBBV049433128 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV049433128</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240517</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231127s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119897620</subfield><subfield code="c">PDF</subfield><subfield code="9">978-1-119-89762-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC7269903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC7269903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL7269903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1390560489</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049433128</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Naser, M. Z.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for civil & environmental engineers</subfield><subfield code="b">a practical approach to data-driven analysis, explainability, and causality</subfield><subfield code="c">M.Z. Naser</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Machine learning for civil and environmental engineers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, New Jersey</subfield><subfield code="b">Wiley</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 588 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Civil engineering-Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bautechnik</subfield><subfield code="0">(DE-588)4004955-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bautechnik</subfield><subfield code="0">(DE-588)4004955-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Naser, M. Z.</subfield><subfield code="t">Machine Learning for Civil and Environmental Engineers</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2023</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-119-89760-6</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=7269903</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf_2024</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049433128 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:10:36Z |
indexdate | 2024-07-20T04:47:04Z |
institution | BVB |
isbn | 9781119897620 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034779214 |
oclc_num | 1390560489 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xix, 588 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf_2024 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Wiley |
record_format | marc |
spelling | Naser, M. Z. Verfasser aut Machine learning for civil & environmental engineers a practical approach to data-driven analysis, explainability, and causality M.Z. Naser Machine learning for civil and environmental engineers Hoboken, New Jersey Wiley 2023 © 2023 1 Online-Ressource (xix, 588 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Machine learning Civil engineering-Data processing Bautechnik (DE-588)4004955-3 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 s Bautechnik (DE-588)4004955-3 s DE-604 Erscheint auch als Naser, M. Z. Machine Learning for Civil and Environmental Engineers Newark : John Wiley & Sons, Incorporated,c2023 Druck-Ausgabe, Hardcover 978-1-119-89760-6 |
spellingShingle | Naser, M. Z. Machine learning for civil & environmental engineers a practical approach to data-driven analysis, explainability, and causality Machine learning Civil engineering-Data processing Bautechnik (DE-588)4004955-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4004955-3 (DE-588)4193754-5 |
title | Machine learning for civil & environmental engineers a practical approach to data-driven analysis, explainability, and causality |
title_alt | Machine learning for civil and environmental engineers |
title_auth | Machine learning for civil & environmental engineers a practical approach to data-driven analysis, explainability, and causality |
title_exact_search | Machine learning for civil & environmental engineers a practical approach to data-driven analysis, explainability, and causality |
title_exact_search_txtP | Machine Learning for Civil and Environmental Engineers A Practical Approach to Data-Driven Analysis, Explainability, and Causality |
title_full | Machine learning for civil & environmental engineers a practical approach to data-driven analysis, explainability, and causality M.Z. Naser |
title_fullStr | Machine learning for civil & environmental engineers a practical approach to data-driven analysis, explainability, and causality M.Z. Naser |
title_full_unstemmed | Machine learning for civil & environmental engineers a practical approach to data-driven analysis, explainability, and causality M.Z. Naser |
title_short | Machine learning for civil & environmental engineers |
title_sort | machine learning for civil environmental engineers a practical approach to data driven analysis explainability and causality |
title_sub | a practical approach to data-driven analysis, explainability, and causality |
topic | Machine learning Civil engineering-Data processing Bautechnik (DE-588)4004955-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Machine learning Civil engineering-Data processing Bautechnik Maschinelles Lernen |
work_keys_str_mv | AT nasermz machinelearningforcivilenvironmentalengineersapracticalapproachtodatadrivenanalysisexplainabilityandcausality AT nasermz machinelearningforcivilandenvironmentalengineers |