Machine learning engineering with Python: manage the lifecycle of machine learning models using MLOps with practical examples
The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to he...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham
Packt Publishing
2023
|
Ausgabe: | second edition |
Online-Zugang: | DE-Aug4 DE-573 DE-898 DE-91 DE-706 URL des Erstveröffentlichers |
Zusammenfassung: | The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift. Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques. With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning. |
Beschreibung: | 1 Online-Ressource (xxiii, 436 Seiten) |
ISBN: | 9781837634354 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049424793 | ||
003 | DE-604 | ||
005 | 20240208 | ||
007 | cr|uuu---uuuuu | ||
008 | 231121s2023 xx o|||| 00||| eng d | ||
020 | |a 9781837634354 |9 978-1-83763-435-4 | ||
035 | |a (ZDB-221-PPK)PACKT0006868 | ||
035 | |a (OCoLC)1410702130 | ||
035 | |a (DE-599)BVBBV049424793 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-573 |a DE-706 |a DE-898 | ||
100 | 1 | |a McMahon, Andrew P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine learning engineering with Python |b manage the lifecycle of machine learning models using MLOps with practical examples |c Andrew P. McMahon, Adi Polak |
250 | |a second edition | ||
264 | 1 | |a Birmingham |b Packt Publishing |c 2023 | |
300 | |a 1 Online-Ressource (xxiii, 436 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift. Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques. With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning. | ||
700 | 1 | |a Polak, Adi |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-83763-196-4 |
856 | 4 | 0 | |u https://portal.igpublish.com/iglibrary/search/PACKT0006868.html |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-221-PPK | ||
912 | |a ZDB-221-PDA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034752201 | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006868.html |l DE-Aug4 |p ZDB-221-PDA |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006868.html |l DE-573 |p ZDB-221-PDA |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006868.html |l DE-898 |p ZDB-221-PDA |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006868.html |l DE-91 |p ZDB-221-PDA |q TUM_Paketkauf_2024 |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006868.html |l DE-706 |p ZDB-221-PDA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1822044809549840384 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | McMahon, Andrew P. Polak, Adi |
author_facet | McMahon, Andrew P. Polak, Adi |
author_role | aut aut |
author_sort | McMahon, Andrew P. |
author_variant | a p m ap apm a p ap |
building | Verbundindex |
bvnumber | BV049424793 |
collection | ZDB-221-PPK ZDB-221-PDA |
ctrlnum | (ZDB-221-PPK)PACKT0006868 (OCoLC)1410702130 (DE-599)BVBBV049424793 |
edition | second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049424793</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240208</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231121s2023 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781837634354</subfield><subfield code="9">978-1-83763-435-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-221-PPK)PACKT0006868</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1410702130</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049424793</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McMahon, Andrew P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning engineering with Python</subfield><subfield code="b">manage the lifecycle of machine learning models using MLOps with practical examples</subfield><subfield code="c">Andrew P. McMahon, Adi Polak</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiii, 436 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift. Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques. With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Polak, Adi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-83763-196-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006868.html</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PPK</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PDA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034752201</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006868.html</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006868.html</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006868.html</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006868.html</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="q">TUM_Paketkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006868.html</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049424793 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:08:38Z |
indexdate | 2025-01-23T13:02:18Z |
institution | BVB |
isbn | 9781837634354 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034752201 |
oclc_num | 1410702130 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-573 DE-706 DE-898 DE-BY-UBR |
owner_facet | DE-91 DE-BY-TUM DE-573 DE-706 DE-898 DE-BY-UBR |
physical | 1 Online-Ressource (xxiii, 436 Seiten) |
psigel | ZDB-221-PPK ZDB-221-PDA ZDB-221-PDA TUM_Paketkauf_2024 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Packt Publishing |
record_format | marc |
spelling | McMahon, Andrew P. Verfasser aut Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples Andrew P. McMahon, Adi Polak second edition Birmingham Packt Publishing 2023 1 Online-Ressource (xxiii, 436 Seiten) txt rdacontent c rdamedia cr rdacarrier The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift. Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques. With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning. Polak, Adi Verfasser aut Erscheint auch als Druck-Ausgabe 978-1-83763-196-4 https://portal.igpublish.com/iglibrary/search/PACKT0006868.html Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | McMahon, Andrew P. Polak, Adi Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples |
title | Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples |
title_auth | Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples |
title_exact_search | Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples |
title_exact_search_txtP | Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples |
title_full | Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples Andrew P. McMahon, Adi Polak |
title_fullStr | Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples Andrew P. McMahon, Adi Polak |
title_full_unstemmed | Machine learning engineering with Python manage the lifecycle of machine learning models using MLOps with practical examples Andrew P. McMahon, Adi Polak |
title_short | Machine learning engineering with Python |
title_sort | machine learning engineering with python manage the lifecycle of machine learning models using mlops with practical examples |
title_sub | manage the lifecycle of machine learning models using MLOps with practical examples |
url | https://portal.igpublish.com/iglibrary/search/PACKT0006868.html |
work_keys_str_mv | AT mcmahonandrewp machinelearningengineeringwithpythonmanagethelifecycleofmachinelearningmodelsusingmlopswithpracticalexamples AT polakadi machinelearningengineeringwithpythonmanagethelifecycleofmachinelearningmodelsusingmlopswithpracticalexamples |