Deep learning and XAI techniques for anomaly detection: integrate the theory and practice of deep anomaly explainability
Despite promising advances, the opaque nature of deep learning models makes it difficult to interpret them, which is a drawback in terms of their practical deployment and regulatory compliance. Deep Learning and XAI Techniques for Anomaly Detection shows you state-of-the-art methods that'll hel...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham
Packt Publishing
2023
|
Ausgabe: | 1st edition |
Schlagworte: | |
Online-Zugang: | DE-Aug4 DE-573 DE-898 DE-91 DE-706 Volltext |
Zusammenfassung: | Despite promising advances, the opaque nature of deep learning models makes it difficult to interpret them, which is a drawback in terms of their practical deployment and regulatory compliance. Deep Learning and XAI Techniques for Anomaly Detection shows you state-of-the-art methods that'll help you to understand and address these challenges. By leveraging the Explainable AI (XAI) and deep learning techniques described in this book, you'll discover how to successfully extract business-critical insights while ensuring fair and ethical analysis. This practical guide will provide you with tools and best practices to achieve transparency and interpretability with deep learning models, ultimately establishing trust in your anomaly detection applications. Throughout the chapters, you'll get equipped with XAI and anomaly detection knowledge that'll enable you to embark on a series of real-world projects. Whether you are building computer vision, natural language processing, or time series models, you'll learn how to quantify and assess their explainability. By the end of this deep learning book, you'll be able to build a variety of deep learning XAI models and perform validation to assess their explainability. |
Beschreibung: | 1 Online-Ressource (xvi, 201 Seiten) |
ISBN: | 9781804613375 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049424537 | ||
003 | DE-604 | ||
005 | 20240409 | ||
007 | cr|uuu---uuuuu | ||
008 | 231121s2023 xx o|||| 00||| eng d | ||
020 | |a 9781804613375 |9 978-1-80461-337-5 | ||
035 | |a (ZDB-221-PPK)PACKT0006709 | ||
035 | |a (OCoLC)1410710761 | ||
035 | |a (DE-599)BVBBV049424537 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-573 |a DE-706 |a DE-898 | ||
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
100 | 1 | |a Simon, Cher |e Verfasser |0 (DE-588)1309357099 |4 aut | |
245 | 1 | 0 | |a Deep learning and XAI techniques for anomaly detection |b integrate the theory and practice of deep anomaly explainability |c Cher Simon |
250 | |a 1st edition | ||
264 | 1 | |a Birmingham |b Packt Publishing |c 2023 | |
300 | |a 1 Online-Ressource (xvi, 201 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Despite promising advances, the opaque nature of deep learning models makes it difficult to interpret them, which is a drawback in terms of their practical deployment and regulatory compliance. Deep Learning and XAI Techniques for Anomaly Detection shows you state-of-the-art methods that'll help you to understand and address these challenges. By leveraging the Explainable AI (XAI) and deep learning techniques described in this book, you'll discover how to successfully extract business-critical insights while ensuring fair and ethical analysis. This practical guide will provide you with tools and best practices to achieve transparency and interpretability with deep learning models, ultimately establishing trust in your anomaly detection applications. Throughout the chapters, you'll get equipped with XAI and anomaly detection knowledge that'll enable you to embark on a series of real-world projects. Whether you are building computer vision, natural language processing, or time series models, you'll learn how to quantify and assess their explainability. By the end of this deep learning book, you'll be able to build a variety of deep learning XAI models and perform validation to assess their explainability. | ||
650 | 0 | 7 | |a Computersicherheit |0 (DE-588)4274324-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Computersicherheit |0 (DE-588)4274324-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-80461-775-5 |
856 | 4 | 0 | |u https://portal.igpublish.com/iglibrary/search/PACKT0006709.html |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-221-PAI | ||
912 | |a ZDB-221-PPK | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034751966 | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006709.html |l DE-Aug4 |p ZDB-221-PAI |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006709.html |l DE-573 |p ZDB-221-PAI |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006709.html |l DE-898 |p ZDB-221-PAI |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006709.html |l DE-91 |p ZDB-221-PAI |q TUM_Paketkauf_2024 |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006709.html |l DE-706 |p ZDB-221-PAI |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1822044809008775168 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Simon, Cher |
author_GND | (DE-588)1309357099 |
author_facet | Simon, Cher |
author_role | aut |
author_sort | Simon, Cher |
author_variant | c s cs |
building | Verbundindex |
bvnumber | BV049424537 |
classification_rvk | ST 301 ST 302 |
collection | ZDB-221-PAI ZDB-221-PPK |
ctrlnum | (ZDB-221-PPK)PACKT0006709 (OCoLC)1410710761 (DE-599)BVBBV049424537 |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | 1st edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049424537</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240409</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231121s2023 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781804613375</subfield><subfield code="9">978-1-80461-337-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-221-PPK)PACKT0006709</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1410710761</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049424537</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Simon, Cher</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1309357099</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning and XAI techniques for anomaly detection</subfield><subfield code="b">integrate the theory and practice of deep anomaly explainability</subfield><subfield code="c">Cher Simon</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 201 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Despite promising advances, the opaque nature of deep learning models makes it difficult to interpret them, which is a drawback in terms of their practical deployment and regulatory compliance. Deep Learning and XAI Techniques for Anomaly Detection shows you state-of-the-art methods that'll help you to understand and address these challenges. By leveraging the Explainable AI (XAI) and deep learning techniques described in this book, you'll discover how to successfully extract business-critical insights while ensuring fair and ethical analysis. This practical guide will provide you with tools and best practices to achieve transparency and interpretability with deep learning models, ultimately establishing trust in your anomaly detection applications. Throughout the chapters, you'll get equipped with XAI and anomaly detection knowledge that'll enable you to embark on a series of real-world projects. Whether you are building computer vision, natural language processing, or time series models, you'll learn how to quantify and assess their explainability. By the end of this deep learning book, you'll be able to build a variety of deep learning XAI models and perform validation to assess their explainability.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersicherheit</subfield><subfield code="0">(DE-588)4274324-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Computersicherheit</subfield><subfield code="0">(DE-588)4274324-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-80461-775-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006709.html</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PAI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PPK</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034751966</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006709.html</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-221-PAI</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006709.html</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-221-PAI</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006709.html</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-221-PAI</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006709.html</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-221-PAI</subfield><subfield code="q">TUM_Paketkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006709.html</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-221-PAI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049424537 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:08:35Z |
indexdate | 2025-01-23T13:02:17Z |
institution | BVB |
isbn | 9781804613375 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034751966 |
oclc_num | 1410710761 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-573 DE-706 DE-898 DE-BY-UBR |
owner_facet | DE-91 DE-BY-TUM DE-573 DE-706 DE-898 DE-BY-UBR |
physical | 1 Online-Ressource (xvi, 201 Seiten) |
psigel | ZDB-221-PAI ZDB-221-PPK ZDB-221-PAI TUM_Paketkauf_2024 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Packt Publishing |
record_format | marc |
spelling | Simon, Cher Verfasser (DE-588)1309357099 aut Deep learning and XAI techniques for anomaly detection integrate the theory and practice of deep anomaly explainability Cher Simon 1st edition Birmingham Packt Publishing 2023 1 Online-Ressource (xvi, 201 Seiten) txt rdacontent c rdamedia cr rdacarrier Despite promising advances, the opaque nature of deep learning models makes it difficult to interpret them, which is a drawback in terms of their practical deployment and regulatory compliance. Deep Learning and XAI Techniques for Anomaly Detection shows you state-of-the-art methods that'll help you to understand and address these challenges. By leveraging the Explainable AI (XAI) and deep learning techniques described in this book, you'll discover how to successfully extract business-critical insights while ensuring fair and ethical analysis. This practical guide will provide you with tools and best practices to achieve transparency and interpretability with deep learning models, ultimately establishing trust in your anomaly detection applications. Throughout the chapters, you'll get equipped with XAI and anomaly detection knowledge that'll enable you to embark on a series of real-world projects. Whether you are building computer vision, natural language processing, or time series models, you'll learn how to quantify and assess their explainability. By the end of this deep learning book, you'll be able to build a variety of deep learning XAI models and perform validation to assess their explainability. Computersicherheit (DE-588)4274324-2 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 s Computersicherheit (DE-588)4274324-2 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-80461-775-5 https://portal.igpublish.com/iglibrary/search/PACKT0006709.html Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Simon, Cher Deep learning and XAI techniques for anomaly detection integrate the theory and practice of deep anomaly explainability Computersicherheit (DE-588)4274324-2 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4274324-2 (DE-588)4193754-5 |
title | Deep learning and XAI techniques for anomaly detection integrate the theory and practice of deep anomaly explainability |
title_auth | Deep learning and XAI techniques for anomaly detection integrate the theory and practice of deep anomaly explainability |
title_exact_search | Deep learning and XAI techniques for anomaly detection integrate the theory and practice of deep anomaly explainability |
title_exact_search_txtP | Deep learning and XAI techniques for anomaly detection integrate the theory and practice of deep anomaly explainability |
title_full | Deep learning and XAI techniques for anomaly detection integrate the theory and practice of deep anomaly explainability Cher Simon |
title_fullStr | Deep learning and XAI techniques for anomaly detection integrate the theory and practice of deep anomaly explainability Cher Simon |
title_full_unstemmed | Deep learning and XAI techniques for anomaly detection integrate the theory and practice of deep anomaly explainability Cher Simon |
title_short | Deep learning and XAI techniques for anomaly detection |
title_sort | deep learning and xai techniques for anomaly detection integrate the theory and practice of deep anomaly explainability |
title_sub | integrate the theory and practice of deep anomaly explainability |
topic | Computersicherheit (DE-588)4274324-2 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Computersicherheit Maschinelles Lernen |
url | https://portal.igpublish.com/iglibrary/search/PACKT0006709.html |
work_keys_str_mv | AT simoncher deeplearningandxaitechniquesforanomalydetectionintegratethetheoryandpracticeofdeepanomalyexplainability |