Technological tools for predicting pregnancy complications:
"The lack of comprehensive, innovative insights into the intricate world of pregnancy complication prediction is a pressing concern, as these complications can severely impact the health and wellbeing of pregnant patients. As the complexities of maternal healthcare continue to evolve, scholars...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hershey, Pennsylvania
IGI Global
2023
|
Schlagworte: | |
Online-Zugang: | DE-1050 DE-898 DE-91 DE-706 Volltext |
Zusammenfassung: | "The lack of comprehensive, innovative insights into the intricate world of pregnancy complication prediction is a pressing concern, as these complications can severely impact the health and wellbeing of pregnant patients. As the complexities of maternal healthcare continue to evolve, scholars grapple with the challenge of staying at the forefront of research and innovation in this critical field. The unpredictability of pregnancy complications poses significant risks to positive patient outcomes, demanding novel approaches to diagnosis and prevention. The academic community seeks a solution that can bridge the gap between traditional research and the transformative potential of technological advancements in healthcare.Technological Tools for Predicting Pregnancy Complications not only identify the problem but offer an authoritative solution. It serves as a beacon of knowledge for academic scholars, providing a holistic exploration of how Artificial Intelligence (AI) and Machine Learning (ML) technologies can revolutionize maternal healthcare. With a laser focus on predictive models, comprehensive health data analysis, and innovative algorithmic approaches, this book equips scholars with the tools they need to navigate the ever-evolving landscape of pregnancy complications. Academic scholars will find a treasure trove of insights, spanning from the fundamentals of AI and ML in healthcare to the application of IoT devices and wearable sensors for expectant mothers."-- |
Beschreibung: | 1 Online-Ressource (392 Seiten) |
ISBN: | 9798369317198 |
DOI: | 10.4018/979-8-3693-1718-1 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049419656 | ||
003 | DE-604 | ||
005 | 20241219 | ||
007 | cr|uuu---uuuuu | ||
008 | 231117s2023 xx o|||| 00||| eng d | ||
020 | |a 9798369317198 |9 979-83-69317-19-8 | ||
024 | 7 | |a 10.4018/979-8-3693-1718-1 |2 doi | |
035 | |a (ZDB-98-IGB)00329620 | ||
035 | |a (OCoLC)1410705802 | ||
035 | |a (DE-599)BVBBV049419656 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-898 |a DE-1050 |a DE-706 | ||
082 | 0 | |a 618.3/075 | |
084 | |a WIR 523 |2 stub | ||
084 | |a DAT 000 |2 stub | ||
245 | 1 | 0 | |a Technological tools for predicting pregnancy complications |c D. Satishkumar, P. Maniiarasan, editors |
264 | 1 | |a Hershey, Pennsylvania |b IGI Global |c 2023 | |
300 | |a 1 Online-Ressource (392 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a "The lack of comprehensive, innovative insights into the intricate world of pregnancy complication prediction is a pressing concern, as these complications can severely impact the health and wellbeing of pregnant patients. As the complexities of maternal healthcare continue to evolve, scholars grapple with the challenge of staying at the forefront of research and innovation in this critical field. The unpredictability of pregnancy complications poses significant risks to positive patient outcomes, demanding novel approaches to diagnosis and prevention. The academic community seeks a solution that can bridge the gap between traditional research and the transformative potential of technological advancements in healthcare.Technological Tools for Predicting Pregnancy Complications not only identify the problem but offer an authoritative solution. It serves as a beacon of knowledge for academic scholars, providing a holistic exploration of how Artificial Intelligence (AI) and Machine Learning (ML) technologies can revolutionize maternal healthcare. With a laser focus on predictive models, comprehensive health data analysis, and innovative algorithmic approaches, this book equips scholars with the tools they need to navigate the ever-evolving landscape of pregnancy complications. Academic scholars will find a treasure trove of insights, spanning from the fundamentals of AI and ML in healthcare to the application of IoT devices and wearable sensors for expectant mothers."-- | ||
650 | 4 | |a Pregnancy |x Complications | |
650 | 4 | |a Machine learning | |
700 | 1 | |a Satishkumar, D. |4 edt | |
700 | 1 | |a Maniiarasan, P. |d 1971- |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9798369317181 |
856 | 4 | 0 | |u https://doi.org/10.4018/979-8-3693-1718-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-98-IGB | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034746579 | |
966 | e | |u https://doi.org/10.4018/979-8-3693-1718-1 |l DE-1050 |p ZDB-98-IGB |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/979-8-3693-1718-1 |l DE-898 |p ZDB-98-IGB |q FHR_PDA_IGB |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/979-8-3693-1718-1 |l DE-91 |p ZDB-98-IGB |q TUM_Paketkauf_2023 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/979-8-3693-1718-1 |l DE-706 |p ZDB-98-IGB |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818858746447659008 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Satishkumar, D. Maniiarasan, P. 1971- |
author2_role | edt edt |
author2_variant | d s ds p m pm |
author_facet | Satishkumar, D. Maniiarasan, P. 1971- |
building | Verbundindex |
bvnumber | BV049419656 |
classification_tum | WIR 523 DAT 000 |
collection | ZDB-98-IGB |
ctrlnum | (ZDB-98-IGB)00329620 (OCoLC)1410705802 (DE-599)BVBBV049419656 |
dewey-full | 618.3/075 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 618 - Gynecology, obstetrics, pediatrics, geriatrics |
dewey-raw | 618.3/075 |
dewey-search | 618.3/075 |
dewey-sort | 3618.3 275 |
dewey-tens | 610 - Medicine and health |
discipline | Informatik Wirtschaftswissenschaften Medizin |
discipline_str_mv | Informatik Wirtschaftswissenschaften Medizin |
doi_str_mv | 10.4018/979-8-3693-1718-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049419656</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241219</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231117s2023 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9798369317198</subfield><subfield code="9">979-83-69317-19-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/979-8-3693-1718-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-98-IGB)00329620</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1410705802</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049419656</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">618.3/075</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 523</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Technological tools for predicting pregnancy complications</subfield><subfield code="c">D. Satishkumar, P. Maniiarasan, editors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hershey, Pennsylvania</subfield><subfield code="b">IGI Global</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (392 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The lack of comprehensive, innovative insights into the intricate world of pregnancy complication prediction is a pressing concern, as these complications can severely impact the health and wellbeing of pregnant patients. As the complexities of maternal healthcare continue to evolve, scholars grapple with the challenge of staying at the forefront of research and innovation in this critical field. The unpredictability of pregnancy complications poses significant risks to positive patient outcomes, demanding novel approaches to diagnosis and prevention. The academic community seeks a solution that can bridge the gap between traditional research and the transformative potential of technological advancements in healthcare.Technological Tools for Predicting Pregnancy Complications not only identify the problem but offer an authoritative solution. It serves as a beacon of knowledge for academic scholars, providing a holistic exploration of how Artificial Intelligence (AI) and Machine Learning (ML) technologies can revolutionize maternal healthcare. With a laser focus on predictive models, comprehensive health data analysis, and innovative algorithmic approaches, this book equips scholars with the tools they need to navigate the ever-evolving landscape of pregnancy complications. Academic scholars will find a treasure trove of insights, spanning from the fundamentals of AI and ML in healthcare to the application of IoT devices and wearable sensors for expectant mothers."--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pregnancy</subfield><subfield code="x">Complications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Satishkumar, D.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maniiarasan, P.</subfield><subfield code="d">1971-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9798369317181</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4018/979-8-3693-1718-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-98-IGB</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034746579</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/979-8-3693-1718-1</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/979-8-3693-1718-1</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">FHR_PDA_IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/979-8-3693-1718-1</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">TUM_Paketkauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/979-8-3693-1718-1</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049419656 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:07:33Z |
indexdate | 2024-12-19T09:01:11Z |
institution | BVB |
isbn | 9798369317198 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034746579 |
oclc_num | 1410705802 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-1050 DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-1050 DE-706 |
physical | 1 Online-Ressource (392 Seiten) |
psigel | ZDB-98-IGB ZDB-98-IGB FHR_PDA_IGB ZDB-98-IGB TUM_Paketkauf_2023 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | IGI Global |
record_format | marc |
spelling | Technological tools for predicting pregnancy complications D. Satishkumar, P. Maniiarasan, editors Hershey, Pennsylvania IGI Global 2023 1 Online-Ressource (392 Seiten) txt rdacontent c rdamedia cr rdacarrier "The lack of comprehensive, innovative insights into the intricate world of pregnancy complication prediction is a pressing concern, as these complications can severely impact the health and wellbeing of pregnant patients. As the complexities of maternal healthcare continue to evolve, scholars grapple with the challenge of staying at the forefront of research and innovation in this critical field. The unpredictability of pregnancy complications poses significant risks to positive patient outcomes, demanding novel approaches to diagnosis and prevention. The academic community seeks a solution that can bridge the gap between traditional research and the transformative potential of technological advancements in healthcare.Technological Tools for Predicting Pregnancy Complications not only identify the problem but offer an authoritative solution. It serves as a beacon of knowledge for academic scholars, providing a holistic exploration of how Artificial Intelligence (AI) and Machine Learning (ML) technologies can revolutionize maternal healthcare. With a laser focus on predictive models, comprehensive health data analysis, and innovative algorithmic approaches, this book equips scholars with the tools they need to navigate the ever-evolving landscape of pregnancy complications. Academic scholars will find a treasure trove of insights, spanning from the fundamentals of AI and ML in healthcare to the application of IoT devices and wearable sensors for expectant mothers."-- Pregnancy Complications Machine learning Satishkumar, D. edt Maniiarasan, P. 1971- edt Erscheint auch als Druck-Ausgabe 9798369317181 https://doi.org/10.4018/979-8-3693-1718-1 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Technological tools for predicting pregnancy complications Pregnancy Complications Machine learning |
title | Technological tools for predicting pregnancy complications |
title_auth | Technological tools for predicting pregnancy complications |
title_exact_search | Technological tools for predicting pregnancy complications |
title_exact_search_txtP | Technological tools for predicting pregnancy complications |
title_full | Technological tools for predicting pregnancy complications D. Satishkumar, P. Maniiarasan, editors |
title_fullStr | Technological tools for predicting pregnancy complications D. Satishkumar, P. Maniiarasan, editors |
title_full_unstemmed | Technological tools for predicting pregnancy complications D. Satishkumar, P. Maniiarasan, editors |
title_short | Technological tools for predicting pregnancy complications |
title_sort | technological tools for predicting pregnancy complications |
topic | Pregnancy Complications Machine learning |
topic_facet | Pregnancy Complications Machine learning |
url | https://doi.org/10.4018/979-8-3693-1718-1 |
work_keys_str_mv | AT satishkumard technologicaltoolsforpredictingpregnancycomplications AT maniiarasanp technologicaltoolsforpredictingpregnancycomplications |