Meta-learning frameworks for imaging applications:
"Meta-learning, or learning to learn, has been gaining popularity in recent years to adapt to new tasks systematically and efficiently in machine learning. In the book, Meta-Learning Frameworks for Imaging Applications, experts from the fields of machine learning and imaging come together to ex...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hershey, Pennsylvania
IGI Global
2023
|
Schlagworte: | |
Online-Zugang: | DE-91 DE-898 Volltext |
Zusammenfassung: | "Meta-learning, or learning to learn, has been gaining popularity in recent years to adapt to new tasks systematically and efficiently in machine learning. In the book, Meta-Learning Frameworks for Imaging Applications, experts from the fields of machine learning and imaging come together to explore the current state of meta-learning and its application to medical imaging and health informatics. The book presents an overview of the meta-learning framework, including common versions such as model-agnostic learning, memory augmentation, prototype networks, and learning to optimize. It also discusses how meta-learning can be applied to address fundamental limitations of deep neural networks, such as high data demand, computationally expensive training, and limited ability for task transfer. One critical topic in imaging is image segmentation, and the book explores how a meta-learning-based framework can help identify the best image segmentation algorithm, which would be particularly beneficial in the healthcare domain. This book is relevant to healthcare institutes, e-commerce companies, and educational institutions, as well as professionals and practitioners in the intelligent system, computational data science, network applications, and biomedical applications fields. It is also useful for domain developers and project managers from diagnostic and pharmacy companies involved in the development of medical expert systems. Additionally, graduate and master students in intelligent systems, big data management, computational intelligent approaches, computer vision, and biomedical science can use this book for their final projects and specific courses." |
Beschreibung: | 1 Online-Ressource (253 Seiten) |
ISBN: | 9781668476611 |
DOI: | 10.4018/978-1-6684-7659-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049419592 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 231117s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781668476611 |9 978-1-66847-661-1 | ||
024 | 7 | |a 10.4018/978-1-6684-7659-8 |2 doi | |
035 | |a (ZDB-98-IGB)00309095 | ||
035 | |a (OCoLC)1410707604 | ||
035 | |a (DE-599)BVBBV049419592 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-898 | ||
082 | 0 | |a 616.07/54 | |
084 | |a WIR 523 |2 stub | ||
084 | |a DAT 000 |2 stub | ||
245 | 1 | 0 | |a Meta-learning frameworks for imaging applications |c Ashok Sharma, Sandeep Sengar, Parveen Singh, editors |
264 | 1 | |a Hershey, Pennsylvania |b IGI Global |c 2023 | |
300 | |a 1 Online-Ressource (253 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a "Meta-learning, or learning to learn, has been gaining popularity in recent years to adapt to new tasks systematically and efficiently in machine learning. In the book, Meta-Learning Frameworks for Imaging Applications, experts from the fields of machine learning and imaging come together to explore the current state of meta-learning and its application to medical imaging and health informatics. The book presents an overview of the meta-learning framework, including common versions such as model-agnostic learning, memory augmentation, prototype networks, and learning to optimize. It also discusses how meta-learning can be applied to address fundamental limitations of deep neural networks, such as high data demand, computationally expensive training, and limited ability for task transfer. One critical topic in imaging is image segmentation, and the book explores how a meta-learning-based framework can help identify the best image segmentation algorithm, which would be particularly beneficial in the healthcare domain. This book is relevant to healthcare institutes, e-commerce companies, and educational institutions, as well as professionals and practitioners in the intelligent system, computational data science, network applications, and biomedical applications fields. It is also useful for domain developers and project managers from diagnostic and pharmacy companies involved in the development of medical expert systems. Additionally, graduate and master students in intelligent systems, big data management, computational intelligent approaches, computer vision, and biomedical science can use this book for their final projects and specific courses." | ||
650 | 4 | |a Diagnostic imaging | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Deep learning (Machine learning) | |
700 | 1 | |a Singh, Parveen |d 1976- |4 edt | |
700 | 1 | |a Sengar, Sandeep |d 1985- |4 edt | |
700 | 1 | |a Sharma, Ashok |d 1977- |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781668476598 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1668476592 |
856 | 4 | 0 | |u https://doi.org/10.4018/978-1-6684-7659-8 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-98-IGB | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034746515 | |
966 | e | |u https://doi.org/10.4018/978-1-6684-7659-8 |l DE-91 |p ZDB-98-IGB |q TUM_Paketkauf_2023 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-6684-7659-8 |l DE-898 |p ZDB-98-IGB |q FHR_PDA_IGB |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1808229069070794752 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Singh, Parveen 1976- Sengar, Sandeep 1985- Sharma, Ashok 1977- |
author2_role | edt edt edt |
author2_variant | p s ps s s ss a s as |
author_facet | Singh, Parveen 1976- Sengar, Sandeep 1985- Sharma, Ashok 1977- |
building | Verbundindex |
bvnumber | BV049419592 |
classification_tum | WIR 523 DAT 000 |
collection | ZDB-98-IGB |
ctrlnum | (ZDB-98-IGB)00309095 (OCoLC)1410707604 (DE-599)BVBBV049419592 |
dewey-full | 616.07/54 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 616 - Diseases |
dewey-raw | 616.07/54 |
dewey-search | 616.07/54 |
dewey-sort | 3616.07 254 |
dewey-tens | 610 - Medicine and health |
discipline | Informatik Wirtschaftswissenschaften Medizin |
discipline_str_mv | Informatik Wirtschaftswissenschaften Medizin |
doi_str_mv | 10.4018/978-1-6684-7659-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV049419592</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231117s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781668476611</subfield><subfield code="9">978-1-66847-661-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/978-1-6684-7659-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-98-IGB)00309095</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1410707604</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049419592</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">616.07/54</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 523</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Meta-learning frameworks for imaging applications</subfield><subfield code="c">Ashok Sharma, Sandeep Sengar, Parveen Singh, editors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hershey, Pennsylvania</subfield><subfield code="b">IGI Global</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (253 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Meta-learning, or learning to learn, has been gaining popularity in recent years to adapt to new tasks systematically and efficiently in machine learning. In the book, Meta-Learning Frameworks for Imaging Applications, experts from the fields of machine learning and imaging come together to explore the current state of meta-learning and its application to medical imaging and health informatics. The book presents an overview of the meta-learning framework, including common versions such as model-agnostic learning, memory augmentation, prototype networks, and learning to optimize. It also discusses how meta-learning can be applied to address fundamental limitations of deep neural networks, such as high data demand, computationally expensive training, and limited ability for task transfer. One critical topic in imaging is image segmentation, and the book explores how a meta-learning-based framework can help identify the best image segmentation algorithm, which would be particularly beneficial in the healthcare domain. This book is relevant to healthcare institutes, e-commerce companies, and educational institutions, as well as professionals and practitioners in the intelligent system, computational data science, network applications, and biomedical applications fields. It is also useful for domain developers and project managers from diagnostic and pharmacy companies involved in the development of medical expert systems. Additionally, graduate and master students in intelligent systems, big data management, computational intelligent approaches, computer vision, and biomedical science can use this book for their final projects and specific courses."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diagnostic imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning (Machine learning)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Parveen</subfield><subfield code="d">1976-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sengar, Sandeep</subfield><subfield code="d">1985-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharma, Ashok</subfield><subfield code="d">1977-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781668476598</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1668476592</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4018/978-1-6684-7659-8</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-98-IGB</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034746515</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-6684-7659-8</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">TUM_Paketkauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-6684-7659-8</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">FHR_PDA_IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049419592 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:07:32Z |
indexdate | 2024-08-24T01:07:01Z |
institution | BVB |
isbn | 9781668476611 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034746515 |
oclc_num | 1410707604 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-898 DE-BY-UBR |
owner_facet | DE-91 DE-BY-TUM DE-898 DE-BY-UBR |
physical | 1 Online-Ressource (253 Seiten) |
psigel | ZDB-98-IGB ZDB-98-IGB TUM_Paketkauf_2023 ZDB-98-IGB FHR_PDA_IGB |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | IGI Global |
record_format | marc |
spelling | Meta-learning frameworks for imaging applications Ashok Sharma, Sandeep Sengar, Parveen Singh, editors Hershey, Pennsylvania IGI Global 2023 1 Online-Ressource (253 Seiten) txt rdacontent c rdamedia cr rdacarrier "Meta-learning, or learning to learn, has been gaining popularity in recent years to adapt to new tasks systematically and efficiently in machine learning. In the book, Meta-Learning Frameworks for Imaging Applications, experts from the fields of machine learning and imaging come together to explore the current state of meta-learning and its application to medical imaging and health informatics. The book presents an overview of the meta-learning framework, including common versions such as model-agnostic learning, memory augmentation, prototype networks, and learning to optimize. It also discusses how meta-learning can be applied to address fundamental limitations of deep neural networks, such as high data demand, computationally expensive training, and limited ability for task transfer. One critical topic in imaging is image segmentation, and the book explores how a meta-learning-based framework can help identify the best image segmentation algorithm, which would be particularly beneficial in the healthcare domain. This book is relevant to healthcare institutes, e-commerce companies, and educational institutions, as well as professionals and practitioners in the intelligent system, computational data science, network applications, and biomedical applications fields. It is also useful for domain developers and project managers from diagnostic and pharmacy companies involved in the development of medical expert systems. Additionally, graduate and master students in intelligent systems, big data management, computational intelligent approaches, computer vision, and biomedical science can use this book for their final projects and specific courses." Diagnostic imaging Machine learning Deep learning (Machine learning) Singh, Parveen 1976- edt Sengar, Sandeep 1985- edt Sharma, Ashok 1977- edt Erscheint auch als Druck-Ausgabe 9781668476598 Erscheint auch als Druck-Ausgabe 1668476592 https://doi.org/10.4018/978-1-6684-7659-8 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Meta-learning frameworks for imaging applications Diagnostic imaging Machine learning Deep learning (Machine learning) |
title | Meta-learning frameworks for imaging applications |
title_auth | Meta-learning frameworks for imaging applications |
title_exact_search | Meta-learning frameworks for imaging applications |
title_exact_search_txtP | Meta-learning frameworks for imaging applications |
title_full | Meta-learning frameworks for imaging applications Ashok Sharma, Sandeep Sengar, Parveen Singh, editors |
title_fullStr | Meta-learning frameworks for imaging applications Ashok Sharma, Sandeep Sengar, Parveen Singh, editors |
title_full_unstemmed | Meta-learning frameworks for imaging applications Ashok Sharma, Sandeep Sengar, Parveen Singh, editors |
title_short | Meta-learning frameworks for imaging applications |
title_sort | meta learning frameworks for imaging applications |
topic | Diagnostic imaging Machine learning Deep learning (Machine learning) |
topic_facet | Diagnostic imaging Machine learning Deep learning (Machine learning) |
url | https://doi.org/10.4018/978-1-6684-7659-8 |
work_keys_str_mv | AT singhparveen metalearningframeworksforimagingapplications AT sengarsandeep metalearningframeworksforimagingapplications AT sharmaashok metalearningframeworksforimagingapplications |