Modeling emotion across languages, label formats, and linguistic levels:
Language-based emotion analysis finds itself in a paradoxical situation. In the past decades, a plethora of datasets have been created, covering diverse aspects of natural language and affective states. However, the considerable volume of resulting gold data is scattered across many design decisions...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Jena
2022
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext kostenfrei |
Zusammenfassung: | Language-based emotion analysis finds itself in a paradoxical situation. In the past decades, a plethora of datasets have been created, covering diverse aspects of natural language and affective states. However, the considerable volume of resulting gold data is scattered across many design decisions in dataset creation, acting as sources of heterogeneity (e.g., different natural languages, linguistic units of different sizes such as words, sentences, and texts, the choice for a particular set of emotion variables, and the selection of a particular viewpoint such as the reader or the writer perspective on emotion). On the one hand, this proliferating heterogeneity makes it difficult to re-use existing datasets and software tools or to compare experimental results following different design decisions. On the other hand, this heterogeneity is empirically adequate and valuable from an application perspective. Thus, the solution to the heterogeneity problem cannot be to simply reduce the number of possible design choices through community-wide consensus. Rather, what is needed is a delicate balance between fostering the diversity of emotion data and developing new methods to tackle the resulting comparability issues. This interplay between diversity and comparability of emotion data is the focus area of this thesis and the seven studies compiled within it. The larger vision behind this dissertation is to arrive at a research landscape where diversity and comparability no longer act as antagonists and instead every new sample of annotated data, regardless of the specifics of its annotation design, benefits the endeavor of emotion analysis as a whole. While NLP is still far from achieving this goal, the presented research results, culminating in the establishment of an "emotion interlingua" in the final study, constitute a significant step in this direction. |
Beschreibung: | 1 Online-Ressource (177 Seiten) |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV049412703 | ||
003 | DE-604 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 231115s2022 gw |||| o||u| ||||||eng d | ||
024 | 7 | |a urn:nbn:de:gbv:27-dbt-20221216-092407-006 |2 urn | |
035 | |a (OCoLC)1410702810 | ||
035 | |a (DE-599)KXP1827603305 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-TH | ||
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |a 18.00 |2 bkl | ||
084 | |a 17.46 |2 bkl | ||
100 | 1 | |a Büchel, Sven |d 1990- |e Verfasser |0 (DE-588)1274212685 |4 aut | |
245 | 1 | 0 | |a Modeling emotion across languages, label formats, and linguistic levels |c eingereicht von Sven Büchel |
264 | 1 | |a Jena |c 2022 | |
300 | |a 1 Online-Ressource (177 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Friedrich-Schiller-Universität Jena |d 2022 |g Kumulative Dissertation, enthält Zeitschriftenaufsätze | ||
520 | 3 | |a Language-based emotion analysis finds itself in a paradoxical situation. In the past decades, a plethora of datasets have been created, covering diverse aspects of natural language and affective states. However, the considerable volume of resulting gold data is scattered across many design decisions in dataset creation, acting as sources of heterogeneity (e.g., different natural languages, linguistic units of different sizes such as words, sentences, and texts, the choice for a particular set of emotion variables, and the selection of a particular viewpoint such as the reader or the writer perspective on emotion). On the one hand, this proliferating heterogeneity makes it difficult to re-use existing datasets and software tools or to compare experimental results following different design decisions. On the other hand, this heterogeneity is empirically adequate and valuable from an application perspective. Thus, the solution to the heterogeneity problem cannot be to simply reduce the number of possible design choices through community-wide consensus. Rather, what is needed is a delicate balance between fostering the diversity of emotion data and developing new methods to tackle the resulting comparability issues. This interplay between diversity and comparability of emotion data is the focus area of this thesis and the seven studies compiled within it. The larger vision behind this dissertation is to arrive at a research landscape where diversity and comparability no longer act as antagonists and instead every new sample of annotated data, regardless of the specifics of its annotation design, benefits the endeavor of emotion analysis as a whole. While NLP is still far from achieving this goal, the presented research results, culminating in the establishment of an "emotion interlingua" in the final study, constitute a significant step in this direction. | |
546 | |a Zeitschriftenaufsätze in englischer Sprache | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |2 pdager |5 DE-27 | |
650 | 0 | 7 | |a Gefühl |0 (DE-588)4019702-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Gefühl |0 (DE-588)4019702-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hahn, Udo |d 1954- |0 (DE-588)1029524645 |4 dgs | |
700 | 1 | |a Ungar, Lyle |d ca. 20./21. Jahrhundert |0 (DE-588)1276107455 |4 dgs | |
700 | 1 | |a Hoste, Veronique |d ca. 20./21. Jahrhundert |0 (DE-588)1276107730 |4 dgs | |
710 | 2 | |a Friedrich-Schiller-Universität Jena |0 (DE-588)36164-1 |4 dgg | |
751 | |a Jena |0 (DE-588)4028557-1 |2 gnd |4 uvp | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Büchel, Sven, 1990 - |t Modeling emotion across languages, label formats, and linguistic levels |d Jena, 2022 |h vii, 177 Seiten |
856 | 4 | 0 | |u https://nbn-resolving.org/urn:nbn:de:gbv:27-dbt-20221216-092407-006 |x Langzeitarchivierung |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://d-nb.info/1276236972/34 |x Langzeitarchivierung Nationalbibliothek |z kostenfrei |3 Volltext |
856 | 4 | 0 | |q application/pdf |u https://www.db-thueringen.de/receive/dbt_mods_00055189 |x Verlag |z kostenfrei |
912 | |a ebook | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034739736 |
Datensatz im Suchindex
_version_ | 1813698924119064576 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Büchel, Sven 1990- |
author_GND | (DE-588)1274212685 (DE-588)1029524645 (DE-588)1276107455 (DE-588)1276107730 |
author_facet | Büchel, Sven 1990- |
author_role | aut |
author_sort | Büchel, Sven 1990- |
author_variant | s b sb |
building | Verbundindex |
bvnumber | BV049412703 |
collection | ebook |
ctrlnum | (OCoLC)1410702810 (DE-599)KXP1827603305 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 c 4500</leader><controlfield tag="001">BV049412703</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="006">a m||| 00|||</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231115s2022 gw |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:gbv:27-dbt-20221216-092407-006</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1410702810</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1827603305</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-TH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">18.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Büchel, Sven</subfield><subfield code="d">1990-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1274212685</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling emotion across languages, label formats, and linguistic levels</subfield><subfield code="c">eingereicht von Sven Büchel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Jena</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (177 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Friedrich-Schiller-Universität Jena</subfield><subfield code="d">2022</subfield><subfield code="g">Kumulative Dissertation, enthält Zeitschriftenaufsätze</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Language-based emotion analysis finds itself in a paradoxical situation. In the past decades, a plethora of datasets have been created, covering diverse aspects of natural language and affective states. However, the considerable volume of resulting gold data is scattered across many design decisions in dataset creation, acting as sources of heterogeneity (e.g., different natural languages, linguistic units of different sizes such as words, sentences, and texts, the choice for a particular set of emotion variables, and the selection of a particular viewpoint such as the reader or the writer perspective on emotion). On the one hand, this proliferating heterogeneity makes it difficult to re-use existing datasets and software tools or to compare experimental results following different design decisions. On the other hand, this heterogeneity is empirically adequate and valuable from an application perspective. Thus, the solution to the heterogeneity problem cannot be to simply reduce the number of possible design choices through community-wide consensus. Rather, what is needed is a delicate balance between fostering the diversity of emotion data and developing new methods to tackle the resulting comparability issues. This interplay between diversity and comparability of emotion data is the focus area of this thesis and the seven studies compiled within it. The larger vision behind this dissertation is to arrive at a research landscape where diversity and comparability no longer act as antagonists and instead every new sample of annotated data, regardless of the specifics of its annotation design, benefits the endeavor of emotion analysis as a whole. While NLP is still far from achieving this goal, the presented research results, culminating in the establishment of an "emotion interlingua" in the final study, constitute a significant step in this direction.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">Zeitschriftenaufsätze in englischer Sprache</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="2">pdager</subfield><subfield code="5">DE-27</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gefühl</subfield><subfield code="0">(DE-588)4019702-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gefühl</subfield><subfield code="0">(DE-588)4019702-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hahn, Udo</subfield><subfield code="d">1954-</subfield><subfield code="0">(DE-588)1029524645</subfield><subfield code="4">dgs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ungar, Lyle</subfield><subfield code="d">ca. 20./21. Jahrhundert</subfield><subfield code="0">(DE-588)1276107455</subfield><subfield code="4">dgs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hoste, Veronique</subfield><subfield code="d">ca. 20./21. Jahrhundert</subfield><subfield code="0">(DE-588)1276107730</subfield><subfield code="4">dgs</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Friedrich-Schiller-Universität Jena</subfield><subfield code="0">(DE-588)36164-1</subfield><subfield code="4">dgg</subfield></datafield><datafield tag="751" ind1=" " ind2=" "><subfield code="a">Jena</subfield><subfield code="0">(DE-588)4028557-1</subfield><subfield code="2">gnd</subfield><subfield code="4">uvp</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Büchel, Sven, 1990 -</subfield><subfield code="t">Modeling emotion across languages, label formats, and linguistic levels</subfield><subfield code="d">Jena, 2022</subfield><subfield code="h">vii, 177 Seiten</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:gbv:27-dbt-20221216-092407-006</subfield><subfield code="x">Langzeitarchivierung</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://d-nb.info/1276236972/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="q">application/pdf</subfield><subfield code="u">https://www.db-thueringen.de/receive/dbt_mods_00055189</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034739736</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV049412703 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:06:23Z |
indexdate | 2024-10-23T10:08:01Z |
institution | BVB |
institution_GND | (DE-588)36164-1 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034739736 |
oclc_num | 1410702810 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | 1 Online-Ressource (177 Seiten) |
psigel | ebook |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
record_format | marc |
spelling | Büchel, Sven 1990- Verfasser (DE-588)1274212685 aut Modeling emotion across languages, label formats, and linguistic levels eingereicht von Sven Büchel Jena 2022 1 Online-Ressource (177 Seiten) txt rdacontent c rdamedia cr rdacarrier Dissertation Friedrich-Schiller-Universität Jena 2022 Kumulative Dissertation, enthält Zeitschriftenaufsätze Language-based emotion analysis finds itself in a paradoxical situation. In the past decades, a plethora of datasets have been created, covering diverse aspects of natural language and affective states. However, the considerable volume of resulting gold data is scattered across many design decisions in dataset creation, acting as sources of heterogeneity (e.g., different natural languages, linguistic units of different sizes such as words, sentences, and texts, the choice for a particular set of emotion variables, and the selection of a particular viewpoint such as the reader or the writer perspective on emotion). On the one hand, this proliferating heterogeneity makes it difficult to re-use existing datasets and software tools or to compare experimental results following different design decisions. On the other hand, this heterogeneity is empirically adequate and valuable from an application perspective. Thus, the solution to the heterogeneity problem cannot be to simply reduce the number of possible design choices through community-wide consensus. Rather, what is needed is a delicate balance between fostering the diversity of emotion data and developing new methods to tackle the resulting comparability issues. This interplay between diversity and comparability of emotion data is the focus area of this thesis and the seven studies compiled within it. The larger vision behind this dissertation is to arrive at a research landscape where diversity and comparability no longer act as antagonists and instead every new sample of annotated data, regardless of the specifics of its annotation design, benefits the endeavor of emotion analysis as a whole. While NLP is still far from achieving this goal, the presented research results, culminating in the establishment of an "emotion interlingua" in the final study, constitute a significant step in this direction. Zeitschriftenaufsätze in englischer Sprache Archivierung/Langzeitarchivierung gewährleistet pdager DE-27 Gefühl (DE-588)4019702-5 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Gefühl (DE-588)4019702-5 s DE-604 Hahn, Udo 1954- (DE-588)1029524645 dgs Ungar, Lyle ca. 20./21. Jahrhundert (DE-588)1276107455 dgs Hoste, Veronique ca. 20./21. Jahrhundert (DE-588)1276107730 dgs Friedrich-Schiller-Universität Jena (DE-588)36164-1 dgg Jena (DE-588)4028557-1 gnd uvp Erscheint auch als Druck-Ausgabe Büchel, Sven, 1990 - Modeling emotion across languages, label formats, and linguistic levels Jena, 2022 vii, 177 Seiten https://nbn-resolving.org/urn:nbn:de:gbv:27-dbt-20221216-092407-006 Langzeitarchivierung Resolving-System kostenfrei Volltext https://d-nb.info/1276236972/34 Langzeitarchivierung Nationalbibliothek kostenfrei Volltext application/pdf https://www.db-thueringen.de/receive/dbt_mods_00055189 Verlag kostenfrei |
spellingShingle | Büchel, Sven 1990- Modeling emotion across languages, label formats, and linguistic levels Gefühl (DE-588)4019702-5 gnd |
subject_GND | (DE-588)4019702-5 (DE-588)4113937-9 |
title | Modeling emotion across languages, label formats, and linguistic levels |
title_auth | Modeling emotion across languages, label formats, and linguistic levels |
title_exact_search | Modeling emotion across languages, label formats, and linguistic levels |
title_exact_search_txtP | Modeling emotion across languages, label formats, and linguistic levels |
title_full | Modeling emotion across languages, label formats, and linguistic levels eingereicht von Sven Büchel |
title_fullStr | Modeling emotion across languages, label formats, and linguistic levels eingereicht von Sven Büchel |
title_full_unstemmed | Modeling emotion across languages, label formats, and linguistic levels eingereicht von Sven Büchel |
title_short | Modeling emotion across languages, label formats, and linguistic levels |
title_sort | modeling emotion across languages label formats and linguistic levels |
topic | Gefühl (DE-588)4019702-5 gnd |
topic_facet | Gefühl Hochschulschrift |
url | https://nbn-resolving.org/urn:nbn:de:gbv:27-dbt-20221216-092407-006 https://d-nb.info/1276236972/34 https://www.db-thueringen.de/receive/dbt_mods_00055189 |
work_keys_str_mv | AT buchelsven modelingemotionacrosslanguageslabelformatsandlinguisticlevels AT hahnudo modelingemotionacrosslanguageslabelformatsandlinguisticlevels AT ungarlyle modelingemotionacrosslanguageslabelformatsandlinguisticlevels AT hosteveronique modelingemotionacrosslanguageslabelformatsandlinguisticlevels AT friedrichschilleruniversitatjena modelingemotionacrosslanguageslabelformatsandlinguisticlevels |