World of Business with Data and Analytics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer
2022
|
Ausgabe: | 1st ed |
Schriftenreihe: | Studies in Autonomic, Data-Driven and Industrial Computing Series
|
Schlagworte: | |
Online-Zugang: | HWR01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (211 Seiten) |
ISBN: | 9789811956898 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049408642 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 231114s2022 |||| o||u| ||||||eng d | ||
020 | |a 9789811956898 |9 978-981-1956-89-8 | ||
035 | |a (ZDB-30-PQE)EBC7102107 | ||
035 | |a (ZDB-30-PAD)EBC7102107 | ||
035 | |a (ZDB-89-EBL)EBL7102107 | ||
035 | |a (OCoLC)1346986780 | ||
035 | |a (DE-599)BVBBV049408642 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 658.4030028563 | |
100 | 1 | |a Sharma, Neha |e Verfasser |4 aut | |
245 | 1 | 0 | |a World of Business with Data and Analytics |
250 | |a 1st ed | ||
264 | 1 | |a Singapore |b Springer |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (211 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Studies in Autonomic, Data-Driven and Industrial Computing Series | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- Acknowledgements -- Contents -- About the Editors -- 1 Dynamic Demand Planning for Distorted Historical Data Due to Pandemic -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Results -- 5 Conclusion -- References -- 2 Cognitive Models to Predict Pipeline Leaks and Ruptures -- 1 Introduction -- 2 Literature Review -- 3 Material and Methodology -- 3.1 Defining the Solution Using Data and Analytics -- 4 Results -- 5 Conclusion -- References -- 3 Network Optimization of the Electricity Grid to Manage Distributed Energy Resources Using Data and Analytics -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Defining a Network Optimization Solution to Build an Agile Grid -- 3.2 Defining the Problem -- 3.3 Defining a Solution for the Problem -- 4 Results -- 5 Conclusion -- References -- 4 Enhancing Market Agility Through Accurate Price Indicators Using Contextualized Data Analytics -- 1 Introduction -- 2 Literature Review -- 3 Data-Flow in Utility Value Chain -- 4 Handaling Market data Volatility and Coherency -- 5 Leveraging Data Analytics in Improving Accuracy of Price-Prediction Models -- 6 Data-Reliant Congestion Management -- 7 Unlocking Techno Commercial Benefits to Utility -- 8 Conclusion -- References -- 5 Infrastructure for Automated Surface Damage Classification and Detection in Production Industries Using ResUNet-based Deep Learning Architecture -- 1 Introduction -- 2 Literature Review -- 3 Dataset Description -- 4 Methodology -- 4.1 Two-Phase Learning Approach -- 5 Results -- 6 Conclusion -- References -- 6 Cardiac Arrhythmias Classification and Detection for Medical Industry Using Wavelet Transformation and Probabilistic Neural Network Architecture -- 1 Introduction -- 2 Literature Review -- 3 The Solution -- 3.1 Discrete Wavelet Transformation -- 3.2 Probabilistic Neural Network | |
505 | 8 | |a 4 Experimental Outcome -- 5 Results and Discussion -- 6 Conclusion -- References -- 7 Investor Behavior Towards Mutual Fund -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Experimental Result and Evaluation -- 5 Results and Discussions -- 6 Conclusion and Future Scope -- References -- 8 iMask-An Artificial Intelligence Based Redaction Engine -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Results -- 5 Conclusion -- References -- 9 Intrusion Detection System Using Signature-Based Detection and Data Mining Technique -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Experimental Result and Evaluation -- 5 Conclusion -- References -- 10 Cloud Cost Intelligence Using Machine Learning -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Results and Recommendations -- 5 Conclusion -- References -- 11 Mining Deeper Insights from Texts Using Unsupervised NLP -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Result -- 5 Conclusion -- References -- 12 Explainable AI for ML Ops -- 1 Introduction -- 1.1 ML and The "Last Mile" Problem -- 1.2 Keeping Tabs on the Model -- 1.3 Explainable AI for Model Monitoring -- 2 Literature Review -- 2.1 AI/ML Maturity -- 2.2 Rise of ML Ops -- 2.3 ML Ops in Postproduction -- 3 Materials and Methods -- 3.1 Datasets -- 3.2 Explainable AI 101 -- 3.3 Explainability and ML Monitoring -- 4 Exploratory Data Analysis -- 5 Experimental Analysis -- 6 Results -- 6.1 SOLUTION 1: Local Explanation with One Particular Observation -- 6.2 SOLUTION 2: Global Monitoring: Iterating the Model 100 Times, Introduce the Manipulation from the 30th Iteration -- 7 Conclusion -- References | |
650 | 4 | |a Business-Data processing | |
700 | 1 | |a Bhatavdekar, Mandar |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Sharma, Neha |t World of Business with Data and Analytics |d Singapore : Springer,c2022 |z 9789811956881 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034735726 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=7102107 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186133187264512 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Sharma, Neha |
author_facet | Sharma, Neha |
author_role | aut |
author_sort | Sharma, Neha |
author_variant | n s ns |
building | Verbundindex |
bvnumber | BV049408642 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- Acknowledgements -- Contents -- About the Editors -- 1 Dynamic Demand Planning for Distorted Historical Data Due to Pandemic -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Results -- 5 Conclusion -- References -- 2 Cognitive Models to Predict Pipeline Leaks and Ruptures -- 1 Introduction -- 2 Literature Review -- 3 Material and Methodology -- 3.1 Defining the Solution Using Data and Analytics -- 4 Results -- 5 Conclusion -- References -- 3 Network Optimization of the Electricity Grid to Manage Distributed Energy Resources Using Data and Analytics -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Defining a Network Optimization Solution to Build an Agile Grid -- 3.2 Defining the Problem -- 3.3 Defining a Solution for the Problem -- 4 Results -- 5 Conclusion -- References -- 4 Enhancing Market Agility Through Accurate Price Indicators Using Contextualized Data Analytics -- 1 Introduction -- 2 Literature Review -- 3 Data-Flow in Utility Value Chain -- 4 Handaling Market data Volatility and Coherency -- 5 Leveraging Data Analytics in Improving Accuracy of Price-Prediction Models -- 6 Data-Reliant Congestion Management -- 7 Unlocking Techno Commercial Benefits to Utility -- 8 Conclusion -- References -- 5 Infrastructure for Automated Surface Damage Classification and Detection in Production Industries Using ResUNet-based Deep Learning Architecture -- 1 Introduction -- 2 Literature Review -- 3 Dataset Description -- 4 Methodology -- 4.1 Two-Phase Learning Approach -- 5 Results -- 6 Conclusion -- References -- 6 Cardiac Arrhythmias Classification and Detection for Medical Industry Using Wavelet Transformation and Probabilistic Neural Network Architecture -- 1 Introduction -- 2 Literature Review -- 3 The Solution -- 3.1 Discrete Wavelet Transformation -- 3.2 Probabilistic Neural Network 4 Experimental Outcome -- 5 Results and Discussion -- 6 Conclusion -- References -- 7 Investor Behavior Towards Mutual Fund -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Experimental Result and Evaluation -- 5 Results and Discussions -- 6 Conclusion and Future Scope -- References -- 8 iMask-An Artificial Intelligence Based Redaction Engine -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Results -- 5 Conclusion -- References -- 9 Intrusion Detection System Using Signature-Based Detection and Data Mining Technique -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Experimental Result and Evaluation -- 5 Conclusion -- References -- 10 Cloud Cost Intelligence Using Machine Learning -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Results and Recommendations -- 5 Conclusion -- References -- 11 Mining Deeper Insights from Texts Using Unsupervised NLP -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Result -- 5 Conclusion -- References -- 12 Explainable AI for ML Ops -- 1 Introduction -- 1.1 ML and The "Last Mile" Problem -- 1.2 Keeping Tabs on the Model -- 1.3 Explainable AI for Model Monitoring -- 2 Literature Review -- 2.1 AI/ML Maturity -- 2.2 Rise of ML Ops -- 2.3 ML Ops in Postproduction -- 3 Materials and Methods -- 3.1 Datasets -- 3.2 Explainable AI 101 -- 3.3 Explainability and ML Monitoring -- 4 Exploratory Data Analysis -- 5 Experimental Analysis -- 6 Results -- 6.1 SOLUTION 1: Local Explanation with One Particular Observation -- 6.2 SOLUTION 2: Global Monitoring: Iterating the Model 100 Times, Introduce the Manipulation from the 30th Iteration -- 7 Conclusion -- References |
ctrlnum | (ZDB-30-PQE)EBC7102107 (ZDB-30-PAD)EBC7102107 (ZDB-89-EBL)EBL7102107 (OCoLC)1346986780 (DE-599)BVBBV049408642 |
dewey-full | 658.4030028563 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.4030028563 |
dewey-search | 658.4030028563 |
dewey-sort | 3658.4030028563 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05151nmm a2200433zc 4500</leader><controlfield tag="001">BV049408642</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231114s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811956898</subfield><subfield code="9">978-981-1956-89-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC7102107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC7102107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL7102107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1346986780</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049408642</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.4030028563</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sharma, Neha</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">World of Business with Data and Analytics</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (211 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in Autonomic, Data-Driven and Industrial Computing Series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgements -- Contents -- About the Editors -- 1 Dynamic Demand Planning for Distorted Historical Data Due to Pandemic -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Results -- 5 Conclusion -- References -- 2 Cognitive Models to Predict Pipeline Leaks and Ruptures -- 1 Introduction -- 2 Literature Review -- 3 Material and Methodology -- 3.1 Defining the Solution Using Data and Analytics -- 4 Results -- 5 Conclusion -- References -- 3 Network Optimization of the Electricity Grid to Manage Distributed Energy Resources Using Data and Analytics -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Defining a Network Optimization Solution to Build an Agile Grid -- 3.2 Defining the Problem -- 3.3 Defining a Solution for the Problem -- 4 Results -- 5 Conclusion -- References -- 4 Enhancing Market Agility Through Accurate Price Indicators Using Contextualized Data Analytics -- 1 Introduction -- 2 Literature Review -- 3 Data-Flow in Utility Value Chain -- 4 Handaling Market data Volatility and Coherency -- 5 Leveraging Data Analytics in Improving Accuracy of Price-Prediction Models -- 6 Data-Reliant Congestion Management -- 7 Unlocking Techno Commercial Benefits to Utility -- 8 Conclusion -- References -- 5 Infrastructure for Automated Surface Damage Classification and Detection in Production Industries Using ResUNet-based Deep Learning Architecture -- 1 Introduction -- 2 Literature Review -- 3 Dataset Description -- 4 Methodology -- 4.1 Two-Phase Learning Approach -- 5 Results -- 6 Conclusion -- References -- 6 Cardiac Arrhythmias Classification and Detection for Medical Industry Using Wavelet Transformation and Probabilistic Neural Network Architecture -- 1 Introduction -- 2 Literature Review -- 3 The Solution -- 3.1 Discrete Wavelet Transformation -- 3.2 Probabilistic Neural Network</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4 Experimental Outcome -- 5 Results and Discussion -- 6 Conclusion -- References -- 7 Investor Behavior Towards Mutual Fund -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Experimental Result and Evaluation -- 5 Results and Discussions -- 6 Conclusion and Future Scope -- References -- 8 iMask-An Artificial Intelligence Based Redaction Engine -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Results -- 5 Conclusion -- References -- 9 Intrusion Detection System Using Signature-Based Detection and Data Mining Technique -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Experimental Result and Evaluation -- 5 Conclusion -- References -- 10 Cloud Cost Intelligence Using Machine Learning -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Results and Recommendations -- 5 Conclusion -- References -- 11 Mining Deeper Insights from Texts Using Unsupervised NLP -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Result -- 5 Conclusion -- References -- 12 Explainable AI for ML Ops -- 1 Introduction -- 1.1 ML and The "Last Mile" Problem -- 1.2 Keeping Tabs on the Model -- 1.3 Explainable AI for Model Monitoring -- 2 Literature Review -- 2.1 AI/ML Maturity -- 2.2 Rise of ML Ops -- 2.3 ML Ops in Postproduction -- 3 Materials and Methods -- 3.1 Datasets -- 3.2 Explainable AI 101 -- 3.3 Explainability and ML Monitoring -- 4 Exploratory Data Analysis -- 5 Experimental Analysis -- 6 Results -- 6.1 SOLUTION 1: Local Explanation with One Particular Observation -- 6.2 SOLUTION 2: Global Monitoring: Iterating the Model 100 Times, Introduce the Manipulation from the 30th Iteration -- 7 Conclusion -- References</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business-Data processing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhatavdekar, Mandar</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Sharma, Neha</subfield><subfield code="t">World of Business with Data and Analytics</subfield><subfield code="d">Singapore : Springer,c2022</subfield><subfield code="z">9789811956881</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034735726</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=7102107</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049408642 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:05:37Z |
indexdate | 2024-07-10T10:06:17Z |
institution | BVB |
isbn | 9789811956898 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034735726 |
oclc_num | 1346986780 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (211 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer |
record_format | marc |
series2 | Studies in Autonomic, Data-Driven and Industrial Computing Series |
spelling | Sharma, Neha Verfasser aut World of Business with Data and Analytics 1st ed Singapore Springer 2022 ©2022 1 Online-Ressource (211 Seiten) txt rdacontent c rdamedia cr rdacarrier Studies in Autonomic, Data-Driven and Industrial Computing Series Description based on publisher supplied metadata and other sources Intro -- Preface -- Acknowledgements -- Contents -- About the Editors -- 1 Dynamic Demand Planning for Distorted Historical Data Due to Pandemic -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Results -- 5 Conclusion -- References -- 2 Cognitive Models to Predict Pipeline Leaks and Ruptures -- 1 Introduction -- 2 Literature Review -- 3 Material and Methodology -- 3.1 Defining the Solution Using Data and Analytics -- 4 Results -- 5 Conclusion -- References -- 3 Network Optimization of the Electricity Grid to Manage Distributed Energy Resources Using Data and Analytics -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Defining a Network Optimization Solution to Build an Agile Grid -- 3.2 Defining the Problem -- 3.3 Defining a Solution for the Problem -- 4 Results -- 5 Conclusion -- References -- 4 Enhancing Market Agility Through Accurate Price Indicators Using Contextualized Data Analytics -- 1 Introduction -- 2 Literature Review -- 3 Data-Flow in Utility Value Chain -- 4 Handaling Market data Volatility and Coherency -- 5 Leveraging Data Analytics in Improving Accuracy of Price-Prediction Models -- 6 Data-Reliant Congestion Management -- 7 Unlocking Techno Commercial Benefits to Utility -- 8 Conclusion -- References -- 5 Infrastructure for Automated Surface Damage Classification and Detection in Production Industries Using ResUNet-based Deep Learning Architecture -- 1 Introduction -- 2 Literature Review -- 3 Dataset Description -- 4 Methodology -- 4.1 Two-Phase Learning Approach -- 5 Results -- 6 Conclusion -- References -- 6 Cardiac Arrhythmias Classification and Detection for Medical Industry Using Wavelet Transformation and Probabilistic Neural Network Architecture -- 1 Introduction -- 2 Literature Review -- 3 The Solution -- 3.1 Discrete Wavelet Transformation -- 3.2 Probabilistic Neural Network 4 Experimental Outcome -- 5 Results and Discussion -- 6 Conclusion -- References -- 7 Investor Behavior Towards Mutual Fund -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Experimental Result and Evaluation -- 5 Results and Discussions -- 6 Conclusion and Future Scope -- References -- 8 iMask-An Artificial Intelligence Based Redaction Engine -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Results -- 5 Conclusion -- References -- 9 Intrusion Detection System Using Signature-Based Detection and Data Mining Technique -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Experimental Result and Evaluation -- 5 Conclusion -- References -- 10 Cloud Cost Intelligence Using Machine Learning -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Results and Recommendations -- 5 Conclusion -- References -- 11 Mining Deeper Insights from Texts Using Unsupervised NLP -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Result -- 5 Conclusion -- References -- 12 Explainable AI for ML Ops -- 1 Introduction -- 1.1 ML and The "Last Mile" Problem -- 1.2 Keeping Tabs on the Model -- 1.3 Explainable AI for Model Monitoring -- 2 Literature Review -- 2.1 AI/ML Maturity -- 2.2 Rise of ML Ops -- 2.3 ML Ops in Postproduction -- 3 Materials and Methods -- 3.1 Datasets -- 3.2 Explainable AI 101 -- 3.3 Explainability and ML Monitoring -- 4 Exploratory Data Analysis -- 5 Experimental Analysis -- 6 Results -- 6.1 SOLUTION 1: Local Explanation with One Particular Observation -- 6.2 SOLUTION 2: Global Monitoring: Iterating the Model 100 Times, Introduce the Manipulation from the 30th Iteration -- 7 Conclusion -- References Business-Data processing Bhatavdekar, Mandar Sonstige oth Erscheint auch als Druck-Ausgabe Sharma, Neha World of Business with Data and Analytics Singapore : Springer,c2022 9789811956881 |
spellingShingle | Sharma, Neha World of Business with Data and Analytics Intro -- Preface -- Acknowledgements -- Contents -- About the Editors -- 1 Dynamic Demand Planning for Distorted Historical Data Due to Pandemic -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Results -- 5 Conclusion -- References -- 2 Cognitive Models to Predict Pipeline Leaks and Ruptures -- 1 Introduction -- 2 Literature Review -- 3 Material and Methodology -- 3.1 Defining the Solution Using Data and Analytics -- 4 Results -- 5 Conclusion -- References -- 3 Network Optimization of the Electricity Grid to Manage Distributed Energy Resources Using Data and Analytics -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Defining a Network Optimization Solution to Build an Agile Grid -- 3.2 Defining the Problem -- 3.3 Defining a Solution for the Problem -- 4 Results -- 5 Conclusion -- References -- 4 Enhancing Market Agility Through Accurate Price Indicators Using Contextualized Data Analytics -- 1 Introduction -- 2 Literature Review -- 3 Data-Flow in Utility Value Chain -- 4 Handaling Market data Volatility and Coherency -- 5 Leveraging Data Analytics in Improving Accuracy of Price-Prediction Models -- 6 Data-Reliant Congestion Management -- 7 Unlocking Techno Commercial Benefits to Utility -- 8 Conclusion -- References -- 5 Infrastructure for Automated Surface Damage Classification and Detection in Production Industries Using ResUNet-based Deep Learning Architecture -- 1 Introduction -- 2 Literature Review -- 3 Dataset Description -- 4 Methodology -- 4.1 Two-Phase Learning Approach -- 5 Results -- 6 Conclusion -- References -- 6 Cardiac Arrhythmias Classification and Detection for Medical Industry Using Wavelet Transformation and Probabilistic Neural Network Architecture -- 1 Introduction -- 2 Literature Review -- 3 The Solution -- 3.1 Discrete Wavelet Transformation -- 3.2 Probabilistic Neural Network 4 Experimental Outcome -- 5 Results and Discussion -- 6 Conclusion -- References -- 7 Investor Behavior Towards Mutual Fund -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Experimental Result and Evaluation -- 5 Results and Discussions -- 6 Conclusion and Future Scope -- References -- 8 iMask-An Artificial Intelligence Based Redaction Engine -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Results -- 5 Conclusion -- References -- 9 Intrusion Detection System Using Signature-Based Detection and Data Mining Technique -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Experimental Result and Evaluation -- 5 Conclusion -- References -- 10 Cloud Cost Intelligence Using Machine Learning -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Results and Recommendations -- 5 Conclusion -- References -- 11 Mining Deeper Insights from Texts Using Unsupervised NLP -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 4 Result -- 5 Conclusion -- References -- 12 Explainable AI for ML Ops -- 1 Introduction -- 1.1 ML and The "Last Mile" Problem -- 1.2 Keeping Tabs on the Model -- 1.3 Explainable AI for Model Monitoring -- 2 Literature Review -- 2.1 AI/ML Maturity -- 2.2 Rise of ML Ops -- 2.3 ML Ops in Postproduction -- 3 Materials and Methods -- 3.1 Datasets -- 3.2 Explainable AI 101 -- 3.3 Explainability and ML Monitoring -- 4 Exploratory Data Analysis -- 5 Experimental Analysis -- 6 Results -- 6.1 SOLUTION 1: Local Explanation with One Particular Observation -- 6.2 SOLUTION 2: Global Monitoring: Iterating the Model 100 Times, Introduce the Manipulation from the 30th Iteration -- 7 Conclusion -- References Business-Data processing |
title | World of Business with Data and Analytics |
title_auth | World of Business with Data and Analytics |
title_exact_search | World of Business with Data and Analytics |
title_exact_search_txtP | World of Business with Data and Analytics |
title_full | World of Business with Data and Analytics |
title_fullStr | World of Business with Data and Analytics |
title_full_unstemmed | World of Business with Data and Analytics |
title_short | World of Business with Data and Analytics |
title_sort | world of business with data and analytics |
topic | Business-Data processing |
topic_facet | Business-Data processing |
work_keys_str_mv | AT sharmaneha worldofbusinesswithdataandanalytics AT bhatavdekarmandar worldofbusinesswithdataandanalytics |