Choice Computing: Machine Learning and Systemic Economics for Choosing
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer
2022
|
Ausgabe: | 1st ed |
Schriftenreihe: | Intelligent Systems Reference Library
v.225 |
Schlagworte: | |
Online-Zugang: | HWR01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (254 Seiten) |
ISBN: | 9789811940590 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV049408539 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 231114s2022 |||| o||u| ||||||eng d | ||
020 | |a 9789811940590 |9 978-981-1940-59-0 | ||
035 | |a (ZDB-30-PQE)EBC7078235 | ||
035 | |a (ZDB-30-PAD)EBC7078235 | ||
035 | |a (ZDB-89-EBL)EBL7078235 | ||
035 | |a (OCoLC)1344542715 | ||
035 | |a (DE-599)BVBBV049408539 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 658.83420285631 | |
100 | 1 | |a Kulkarni, Parag |e Verfasser |4 aut | |
245 | 1 | 0 | |a Choice Computing |b Machine Learning and Systemic Economics for Choosing |
250 | |a 1st ed | ||
264 | 1 | |a Singapore |b Springer |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (254 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Intelligent Systems Reference Library |v v.225 | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Foreword -- Preface: Embarking on the Journey of Choice... -- In Gratitude -- Praise for Choice Computing: Machine Learning and Systemic Economics for Choosing -- Contents -- About the Author -- 1 Introduction: Choosing-What is a Great Deal? -- 1.1 Choosing -- 1.2 Choosing and Learning -- 1.3 Organization of Book -- 1.4 Before Moving Ahead -- 1.5 Knowing What is It About -- References -- 2 Choice Modelling: Where Choosing Meets Computing -- 2.1 Introduction-Unfolding Choice Economics and Choice Computing -- 2.2 Mathematics of Choosing -- 2.3 Economic Impact of Choosing -- 2.4 Choice Paths -- 2.4.1 Three Pillars of Choosing -- 2.5 Rational Choices -- 2.6 Basics of Artificial Intelligence (AI) and Machine Learning (ML) -- 2.6.1 Traditional Algorithms to Reinforcement Learning -- 2.7 Bio-inspired Machine Learning -- 2.8 Choosing Inspired Machine Learning -- 2.9 Philosophy of Choosing -- 2.10 Context-Based ML -- 2.11 Choosing: Manifestation of Freedom, Youthfulness and Intelligence -- 2.11.1 When We Choose Versus When We Select -- 2.11.2 Voluntary Activities -- 2.11.3 Sapiens' Choice Making Resulting in Survival and Supremacy -- 2.11.4 Choosy Innovators -- 2.11.5 Choosing to Become Successful (Goal-Driven Systems) -- 2.12 Empowering Others to Choose -- 2.13 Cost Associated with Choosing -- 2.14 Choose, Let Others Choose and Empower Them to Choose -- 2.15 Choice Architects -- 2.16 Choice Models-Looking at Choosing as a Constraint Satisfaction Problem -- 2.17 Dynamic and Static Choice Models -- 2.18 Uncertainty and Choosing -- 2.18.1 Choice Experiments -- 2.18.2 Top of Mountain and Hazy Glass Theory -- 2.18.3 Seed-Based Exploration -- 2.19 Summary -- References -- 3 ML of Choosing: Architecting Intelligent Choice Framework -- 3.1 Who is a Choice Architect? -- 3.2 Stories Choice Architects -- 3.3 Those Who Help You to Choose | |
505 | 8 | |a 3.4 Architecting Choice Routes -- 3.5 Choice Flow -- 3.6 Choice Architecture to Revolutionize Thinking -- 3.7 Mastering Choice Architecting: Associating Algorithms -- 3.8 Creating Logical Choices for Customers: -- 3.9 Making Customers to Choose What You Would Love to Choose Them -- 3.10 Context-Based Choice Making and Scenario Analysis -- 3.11 Systemic Choice Architect -- 3.12 Summary -- References -- 4 Machine Learning of Choice Economics -- 4.1 ML of Choice Economics -- 4.2 Learning Based on the Impact of Choosing -- 4.3 Creating Experiential Bias or Availability Bias for Learning -- 4.4 Event Anchoring-Based Learning -- 4.4.1 Event Sequencing -- 4.5 First Movers ... -- 4.6 Creation of Legal Choices and Learning by Choice Elimination -- 4.7 Choice Impact-Based Learning -- 4.8 Learning to Set Target for Choosing -- 4.8.1 Leverage Point-Based Learning -- 4.9 Learning Based on Impact of Choosing -- 4.9.1 Rules for Choosing-Based ML -- 4.10 Choice Evolution -- 4.10.1 Evolutionary Choice Systems -- 4.10.2 Choice-Driven Crossover -- 4.10.3 Choice Association -- 4.10.4 Competitive Greedy Choosing -- 4.11 Choice Making in Uncertain Scenario -- 4.12 Core Choices and Supporting Choices (Decision About Learning Points) -- 4.13 Choice Projections-Connecting Peaks of Mountains (Multi-goal Architecture) -- 4.13.1 Choice Intelligence and Choice Processing -- 4.13.2 Societal Choice Computing -- 4.14 Conformation Choice Computing -- 4.14.1 Machine Learning Models -- 4.15 Summary -- References -- 5 Co-operative Choosing: Machines and Humans Thinking Together to Choose the Right Way -- 5.1 Introduction -- 5.2 Co-operative Choosing (Choosing Together) -- 5.3 Choice Co-operation -- 5.3.1 Learning to Choose -- 5.4 Cognitive Choice Models -- 5.5 Competitive, Ranking and Hybrid Models in Co-operative Choosing -- 5.6 Utility Theory for Choosing | |
505 | 8 | |a 5.7 Co-operative Greedy Choice Traversal -- 5.8 Choice Models -- 5.8.1 Causal Cognition -- 5.8.2 Unifying Cognition -- 5.8.3 Binary Choice Instinct -- 5.8.4 Data, Average, Spread and Instinct: Decoding Mean, Median and Distribution of Choosing -- 5.8.5 Associative Choice Models -- 5.8.6 Entropy-Based Choice Models -- 5.8.7 Discrete Choice Models -- 5.8.8 Weighted Additive Choice Models -- 5.8.9 Inter Temporal Choice Models -- 5.8.10 Random Utility Choice Models -- 5.8.11 Hierarchical Choice Models -- 5.8.12 Co-operative Choice Models -- 5.8.13 Randomness in Choosing -- 5.9 Co-operative Choosing to Escape from Noise and Still Preserving Diversity -- 5.10 Summary -- References -- 6 Choice Architecture-Machine Learning Framework -- 6.1 Choice Architecture -- 6.2 Choice Catalyst Algorithm -- 6.3 Choice Architecture and Machine Learning -- 6.4 Identifying Chance Maximization Point -- 6.5 Option Eliminator-Learning to Eliminate -- 6.6 Embedding Emotions, Kansei Engineering (Emotional Computing for Choosing) -- 6.7 State Transitions to 'Choice-State' -- 6.8 Choice Learning Models -- 6.9 Behavioural System and Choosing -- 6.10 Choice Learning-Based Recommender System -- 6.11 Multi Choice Scenarios -- 6.12 Summary -- References -- 7 Artificial Consciousness and Choosing (Towards Conscious Choice Machines) -- 7.1 Introduction -- 7.2 Decoding Consciousness of Choosing -- 7.3 Artificial Conscious Choice Agent -- 7.4 Designing a Conscious Choice Agent (CCA) -- 7.5 Heuristic Choice Strategies -- 7.6 Exploratory Consciousness -- 7.7 Choice Architecting and Recommending Products or Services -- 7.8 Conscious Choice Architecting -- 7.9 Conscious Choice and Evolutionary Learning -- 7.10 Reinforcement and Deep Reinforcement Learning -- 7.11 Dealing with Local Maxima and Minima -- 7.12 Summary -- References -- 8 Choice Computing and Creativity | |
505 | 8 | |a 8.1 Introduction-Creative Contributions: Human Choosing and Machine Choosing -- 8.2 Human Creative Choosing Process -- 8.3 Concept Learning and Verbal Learning for Choosing -- 8.4 What is the Difference Between Choice and a Creative Choice? -- 8.5 Creative Choosing Machines -- 8.6 Creative Choice Agents -- 8.7 Discrimination Learning and Creative Choosing -- 8.8 Unconscious Blind Choosing to Unconscious Effective Choosing -- 8.9 Creative Choosing Models -- 8.10 Concept Maps for Choosing -- 8.11 Human Learning Inspired Creative Machine-Choosing Models -- 8.11.1 Reinforcement Choice Models -- 8.12 Creative Choice Learning Models -- 8.13 Creativity Moments and Creativity Points -- 8.14 Creative Agents and Creative Collaborative Intelligence -- 8.15 Summary -- References -- 9 Experimental Choice Computing and Choice Learning Through Real-Life Stories -- 9.1 Summary -- 9.2 In Education -- 9.3 Health Care -- 9.4 Social Good -- 9.5 Finance -- 9.6 Miscellaneous -- 9.7 Other Applications Can Be Thought of -- 9.8 Summary -- References -- 10 Choice Computing and Beyond -- Index | |
650 | 4 | |a Computer vision | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Kulkarni, Parag |t Choice Computing: Machine Learning and Systemic Economics for Choosing |d Singapore : Springer,c2022 |z 9789811940583 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034735623 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=7078235 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186132892614656 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kulkarni, Parag |
author_facet | Kulkarni, Parag |
author_role | aut |
author_sort | Kulkarni, Parag |
author_variant | p k pk |
building | Verbundindex |
bvnumber | BV049408539 |
collection | ZDB-30-PQE |
contents | Intro -- Foreword -- Preface: Embarking on the Journey of Choice... -- In Gratitude -- Praise for Choice Computing: Machine Learning and Systemic Economics for Choosing -- Contents -- About the Author -- 1 Introduction: Choosing-What is a Great Deal? -- 1.1 Choosing -- 1.2 Choosing and Learning -- 1.3 Organization of Book -- 1.4 Before Moving Ahead -- 1.5 Knowing What is It About -- References -- 2 Choice Modelling: Where Choosing Meets Computing -- 2.1 Introduction-Unfolding Choice Economics and Choice Computing -- 2.2 Mathematics of Choosing -- 2.3 Economic Impact of Choosing -- 2.4 Choice Paths -- 2.4.1 Three Pillars of Choosing -- 2.5 Rational Choices -- 2.6 Basics of Artificial Intelligence (AI) and Machine Learning (ML) -- 2.6.1 Traditional Algorithms to Reinforcement Learning -- 2.7 Bio-inspired Machine Learning -- 2.8 Choosing Inspired Machine Learning -- 2.9 Philosophy of Choosing -- 2.10 Context-Based ML -- 2.11 Choosing: Manifestation of Freedom, Youthfulness and Intelligence -- 2.11.1 When We Choose Versus When We Select -- 2.11.2 Voluntary Activities -- 2.11.3 Sapiens' Choice Making Resulting in Survival and Supremacy -- 2.11.4 Choosy Innovators -- 2.11.5 Choosing to Become Successful (Goal-Driven Systems) -- 2.12 Empowering Others to Choose -- 2.13 Cost Associated with Choosing -- 2.14 Choose, Let Others Choose and Empower Them to Choose -- 2.15 Choice Architects -- 2.16 Choice Models-Looking at Choosing as a Constraint Satisfaction Problem -- 2.17 Dynamic and Static Choice Models -- 2.18 Uncertainty and Choosing -- 2.18.1 Choice Experiments -- 2.18.2 Top of Mountain and Hazy Glass Theory -- 2.18.3 Seed-Based Exploration -- 2.19 Summary -- References -- 3 ML of Choosing: Architecting Intelligent Choice Framework -- 3.1 Who is a Choice Architect? -- 3.2 Stories Choice Architects -- 3.3 Those Who Help You to Choose 3.4 Architecting Choice Routes -- 3.5 Choice Flow -- 3.6 Choice Architecture to Revolutionize Thinking -- 3.7 Mastering Choice Architecting: Associating Algorithms -- 3.8 Creating Logical Choices for Customers: -- 3.9 Making Customers to Choose What You Would Love to Choose Them -- 3.10 Context-Based Choice Making and Scenario Analysis -- 3.11 Systemic Choice Architect -- 3.12 Summary -- References -- 4 Machine Learning of Choice Economics -- 4.1 ML of Choice Economics -- 4.2 Learning Based on the Impact of Choosing -- 4.3 Creating Experiential Bias or Availability Bias for Learning -- 4.4 Event Anchoring-Based Learning -- 4.4.1 Event Sequencing -- 4.5 First Movers ... -- 4.6 Creation of Legal Choices and Learning by Choice Elimination -- 4.7 Choice Impact-Based Learning -- 4.8 Learning to Set Target for Choosing -- 4.8.1 Leverage Point-Based Learning -- 4.9 Learning Based on Impact of Choosing -- 4.9.1 Rules for Choosing-Based ML -- 4.10 Choice Evolution -- 4.10.1 Evolutionary Choice Systems -- 4.10.2 Choice-Driven Crossover -- 4.10.3 Choice Association -- 4.10.4 Competitive Greedy Choosing -- 4.11 Choice Making in Uncertain Scenario -- 4.12 Core Choices and Supporting Choices (Decision About Learning Points) -- 4.13 Choice Projections-Connecting Peaks of Mountains (Multi-goal Architecture) -- 4.13.1 Choice Intelligence and Choice Processing -- 4.13.2 Societal Choice Computing -- 4.14 Conformation Choice Computing -- 4.14.1 Machine Learning Models -- 4.15 Summary -- References -- 5 Co-operative Choosing: Machines and Humans Thinking Together to Choose the Right Way -- 5.1 Introduction -- 5.2 Co-operative Choosing (Choosing Together) -- 5.3 Choice Co-operation -- 5.3.1 Learning to Choose -- 5.4 Cognitive Choice Models -- 5.5 Competitive, Ranking and Hybrid Models in Co-operative Choosing -- 5.6 Utility Theory for Choosing 5.7 Co-operative Greedy Choice Traversal -- 5.8 Choice Models -- 5.8.1 Causal Cognition -- 5.8.2 Unifying Cognition -- 5.8.3 Binary Choice Instinct -- 5.8.4 Data, Average, Spread and Instinct: Decoding Mean, Median and Distribution of Choosing -- 5.8.5 Associative Choice Models -- 5.8.6 Entropy-Based Choice Models -- 5.8.7 Discrete Choice Models -- 5.8.8 Weighted Additive Choice Models -- 5.8.9 Inter Temporal Choice Models -- 5.8.10 Random Utility Choice Models -- 5.8.11 Hierarchical Choice Models -- 5.8.12 Co-operative Choice Models -- 5.8.13 Randomness in Choosing -- 5.9 Co-operative Choosing to Escape from Noise and Still Preserving Diversity -- 5.10 Summary -- References -- 6 Choice Architecture-Machine Learning Framework -- 6.1 Choice Architecture -- 6.2 Choice Catalyst Algorithm -- 6.3 Choice Architecture and Machine Learning -- 6.4 Identifying Chance Maximization Point -- 6.5 Option Eliminator-Learning to Eliminate -- 6.6 Embedding Emotions, Kansei Engineering (Emotional Computing for Choosing) -- 6.7 State Transitions to 'Choice-State' -- 6.8 Choice Learning Models -- 6.9 Behavioural System and Choosing -- 6.10 Choice Learning-Based Recommender System -- 6.11 Multi Choice Scenarios -- 6.12 Summary -- References -- 7 Artificial Consciousness and Choosing (Towards Conscious Choice Machines) -- 7.1 Introduction -- 7.2 Decoding Consciousness of Choosing -- 7.3 Artificial Conscious Choice Agent -- 7.4 Designing a Conscious Choice Agent (CCA) -- 7.5 Heuristic Choice Strategies -- 7.6 Exploratory Consciousness -- 7.7 Choice Architecting and Recommending Products or Services -- 7.8 Conscious Choice Architecting -- 7.9 Conscious Choice and Evolutionary Learning -- 7.10 Reinforcement and Deep Reinforcement Learning -- 7.11 Dealing with Local Maxima and Minima -- 7.12 Summary -- References -- 8 Choice Computing and Creativity 8.1 Introduction-Creative Contributions: Human Choosing and Machine Choosing -- 8.2 Human Creative Choosing Process -- 8.3 Concept Learning and Verbal Learning for Choosing -- 8.4 What is the Difference Between Choice and a Creative Choice? -- 8.5 Creative Choosing Machines -- 8.6 Creative Choice Agents -- 8.7 Discrimination Learning and Creative Choosing -- 8.8 Unconscious Blind Choosing to Unconscious Effective Choosing -- 8.9 Creative Choosing Models -- 8.10 Concept Maps for Choosing -- 8.11 Human Learning Inspired Creative Machine-Choosing Models -- 8.11.1 Reinforcement Choice Models -- 8.12 Creative Choice Learning Models -- 8.13 Creativity Moments and Creativity Points -- 8.14 Creative Agents and Creative Collaborative Intelligence -- 8.15 Summary -- References -- 9 Experimental Choice Computing and Choice Learning Through Real-Life Stories -- 9.1 Summary -- 9.2 In Education -- 9.3 Health Care -- 9.4 Social Good -- 9.5 Finance -- 9.6 Miscellaneous -- 9.7 Other Applications Can Be Thought of -- 9.8 Summary -- References -- 10 Choice Computing and Beyond -- Index |
ctrlnum | (ZDB-30-PQE)EBC7078235 (ZDB-30-PAD)EBC7078235 (ZDB-89-EBL)EBL7078235 (OCoLC)1344542715 (DE-599)BVBBV049408539 |
dewey-full | 658.83420285631 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.83420285631 |
dewey-search | 658.83420285631 |
dewey-sort | 3658.83420285631 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08283nmm a2200445zcb4500</leader><controlfield tag="001">BV049408539</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231114s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811940590</subfield><subfield code="9">978-981-1940-59-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC7078235</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC7078235</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL7078235</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1344542715</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049408539</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.83420285631</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kulkarni, Parag</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Choice Computing</subfield><subfield code="b">Machine Learning and Systemic Economics for Choosing</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (254 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Intelligent Systems Reference Library</subfield><subfield code="v">v.225</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Foreword -- Preface: Embarking on the Journey of Choice... -- In Gratitude -- Praise for Choice Computing: Machine Learning and Systemic Economics for Choosing -- Contents -- About the Author -- 1 Introduction: Choosing-What is a Great Deal? -- 1.1 Choosing -- 1.2 Choosing and Learning -- 1.3 Organization of Book -- 1.4 Before Moving Ahead -- 1.5 Knowing What is It About -- References -- 2 Choice Modelling: Where Choosing Meets Computing -- 2.1 Introduction-Unfolding Choice Economics and Choice Computing -- 2.2 Mathematics of Choosing -- 2.3 Economic Impact of Choosing -- 2.4 Choice Paths -- 2.4.1 Three Pillars of Choosing -- 2.5 Rational Choices -- 2.6 Basics of Artificial Intelligence (AI) and Machine Learning (ML) -- 2.6.1 Traditional Algorithms to Reinforcement Learning -- 2.7 Bio-inspired Machine Learning -- 2.8 Choosing Inspired Machine Learning -- 2.9 Philosophy of Choosing -- 2.10 Context-Based ML -- 2.11 Choosing: Manifestation of Freedom, Youthfulness and Intelligence -- 2.11.1 When We Choose Versus When We Select -- 2.11.2 Voluntary Activities -- 2.11.3 Sapiens' Choice Making Resulting in Survival and Supremacy -- 2.11.4 Choosy Innovators -- 2.11.5 Choosing to Become Successful (Goal-Driven Systems) -- 2.12 Empowering Others to Choose -- 2.13 Cost Associated with Choosing -- 2.14 Choose, Let Others Choose and Empower Them to Choose -- 2.15 Choice Architects -- 2.16 Choice Models-Looking at Choosing as a Constraint Satisfaction Problem -- 2.17 Dynamic and Static Choice Models -- 2.18 Uncertainty and Choosing -- 2.18.1 Choice Experiments -- 2.18.2 Top of Mountain and Hazy Glass Theory -- 2.18.3 Seed-Based Exploration -- 2.19 Summary -- References -- 3 ML of Choosing: Architecting Intelligent Choice Framework -- 3.1 Who is a Choice Architect? -- 3.2 Stories Choice Architects -- 3.3 Those Who Help You to Choose</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4 Architecting Choice Routes -- 3.5 Choice Flow -- 3.6 Choice Architecture to Revolutionize Thinking -- 3.7 Mastering Choice Architecting: Associating Algorithms -- 3.8 Creating Logical Choices for Customers: -- 3.9 Making Customers to Choose What You Would Love to Choose Them -- 3.10 Context-Based Choice Making and Scenario Analysis -- 3.11 Systemic Choice Architect -- 3.12 Summary -- References -- 4 Machine Learning of Choice Economics -- 4.1 ML of Choice Economics -- 4.2 Learning Based on the Impact of Choosing -- 4.3 Creating Experiential Bias or Availability Bias for Learning -- 4.4 Event Anchoring-Based Learning -- 4.4.1 Event Sequencing -- 4.5 First Movers ... -- 4.6 Creation of Legal Choices and Learning by Choice Elimination -- 4.7 Choice Impact-Based Learning -- 4.8 Learning to Set Target for Choosing -- 4.8.1 Leverage Point-Based Learning -- 4.9 Learning Based on Impact of Choosing -- 4.9.1 Rules for Choosing-Based ML -- 4.10 Choice Evolution -- 4.10.1 Evolutionary Choice Systems -- 4.10.2 Choice-Driven Crossover -- 4.10.3 Choice Association -- 4.10.4 Competitive Greedy Choosing -- 4.11 Choice Making in Uncertain Scenario -- 4.12 Core Choices and Supporting Choices (Decision About Learning Points) -- 4.13 Choice Projections-Connecting Peaks of Mountains (Multi-goal Architecture) -- 4.13.1 Choice Intelligence and Choice Processing -- 4.13.2 Societal Choice Computing -- 4.14 Conformation Choice Computing -- 4.14.1 Machine Learning Models -- 4.15 Summary -- References -- 5 Co-operative Choosing: Machines and Humans Thinking Together to Choose the Right Way -- 5.1 Introduction -- 5.2 Co-operative Choosing (Choosing Together) -- 5.3 Choice Co-operation -- 5.3.1 Learning to Choose -- 5.4 Cognitive Choice Models -- 5.5 Competitive, Ranking and Hybrid Models in Co-operative Choosing -- 5.6 Utility Theory for Choosing</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.7 Co-operative Greedy Choice Traversal -- 5.8 Choice Models -- 5.8.1 Causal Cognition -- 5.8.2 Unifying Cognition -- 5.8.3 Binary Choice Instinct -- 5.8.4 Data, Average, Spread and Instinct: Decoding Mean, Median and Distribution of Choosing -- 5.8.5 Associative Choice Models -- 5.8.6 Entropy-Based Choice Models -- 5.8.7 Discrete Choice Models -- 5.8.8 Weighted Additive Choice Models -- 5.8.9 Inter Temporal Choice Models -- 5.8.10 Random Utility Choice Models -- 5.8.11 Hierarchical Choice Models -- 5.8.12 Co-operative Choice Models -- 5.8.13 Randomness in Choosing -- 5.9 Co-operative Choosing to Escape from Noise and Still Preserving Diversity -- 5.10 Summary -- References -- 6 Choice Architecture-Machine Learning Framework -- 6.1 Choice Architecture -- 6.2 Choice Catalyst Algorithm -- 6.3 Choice Architecture and Machine Learning -- 6.4 Identifying Chance Maximization Point -- 6.5 Option Eliminator-Learning to Eliminate -- 6.6 Embedding Emotions, Kansei Engineering (Emotional Computing for Choosing) -- 6.7 State Transitions to 'Choice-State' -- 6.8 Choice Learning Models -- 6.9 Behavioural System and Choosing -- 6.10 Choice Learning-Based Recommender System -- 6.11 Multi Choice Scenarios -- 6.12 Summary -- References -- 7 Artificial Consciousness and Choosing (Towards Conscious Choice Machines) -- 7.1 Introduction -- 7.2 Decoding Consciousness of Choosing -- 7.3 Artificial Conscious Choice Agent -- 7.4 Designing a Conscious Choice Agent (CCA) -- 7.5 Heuristic Choice Strategies -- 7.6 Exploratory Consciousness -- 7.7 Choice Architecting and Recommending Products or Services -- 7.8 Conscious Choice Architecting -- 7.9 Conscious Choice and Evolutionary Learning -- 7.10 Reinforcement and Deep Reinforcement Learning -- 7.11 Dealing with Local Maxima and Minima -- 7.12 Summary -- References -- 8 Choice Computing and Creativity</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.1 Introduction-Creative Contributions: Human Choosing and Machine Choosing -- 8.2 Human Creative Choosing Process -- 8.3 Concept Learning and Verbal Learning for Choosing -- 8.4 What is the Difference Between Choice and a Creative Choice? -- 8.5 Creative Choosing Machines -- 8.6 Creative Choice Agents -- 8.7 Discrimination Learning and Creative Choosing -- 8.8 Unconscious Blind Choosing to Unconscious Effective Choosing -- 8.9 Creative Choosing Models -- 8.10 Concept Maps for Choosing -- 8.11 Human Learning Inspired Creative Machine-Choosing Models -- 8.11.1 Reinforcement Choice Models -- 8.12 Creative Choice Learning Models -- 8.13 Creativity Moments and Creativity Points -- 8.14 Creative Agents and Creative Collaborative Intelligence -- 8.15 Summary -- References -- 9 Experimental Choice Computing and Choice Learning Through Real-Life Stories -- 9.1 Summary -- 9.2 In Education -- 9.3 Health Care -- 9.4 Social Good -- 9.5 Finance -- 9.6 Miscellaneous -- 9.7 Other Applications Can Be Thought of -- 9.8 Summary -- References -- 10 Choice Computing and Beyond -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer vision</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Kulkarni, Parag</subfield><subfield code="t">Choice Computing: Machine Learning and Systemic Economics for Choosing</subfield><subfield code="d">Singapore : Springer,c2022</subfield><subfield code="z">9789811940583</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034735623</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=7078235</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049408539 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:05:37Z |
indexdate | 2024-07-10T10:06:16Z |
institution | BVB |
isbn | 9789811940590 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034735623 |
oclc_num | 1344542715 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (254 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer |
record_format | marc |
series2 | Intelligent Systems Reference Library |
spelling | Kulkarni, Parag Verfasser aut Choice Computing Machine Learning and Systemic Economics for Choosing 1st ed Singapore Springer 2022 ©2022 1 Online-Ressource (254 Seiten) txt rdacontent c rdamedia cr rdacarrier Intelligent Systems Reference Library v.225 Description based on publisher supplied metadata and other sources Intro -- Foreword -- Preface: Embarking on the Journey of Choice... -- In Gratitude -- Praise for Choice Computing: Machine Learning and Systemic Economics for Choosing -- Contents -- About the Author -- 1 Introduction: Choosing-What is a Great Deal? -- 1.1 Choosing -- 1.2 Choosing and Learning -- 1.3 Organization of Book -- 1.4 Before Moving Ahead -- 1.5 Knowing What is It About -- References -- 2 Choice Modelling: Where Choosing Meets Computing -- 2.1 Introduction-Unfolding Choice Economics and Choice Computing -- 2.2 Mathematics of Choosing -- 2.3 Economic Impact of Choosing -- 2.4 Choice Paths -- 2.4.1 Three Pillars of Choosing -- 2.5 Rational Choices -- 2.6 Basics of Artificial Intelligence (AI) and Machine Learning (ML) -- 2.6.1 Traditional Algorithms to Reinforcement Learning -- 2.7 Bio-inspired Machine Learning -- 2.8 Choosing Inspired Machine Learning -- 2.9 Philosophy of Choosing -- 2.10 Context-Based ML -- 2.11 Choosing: Manifestation of Freedom, Youthfulness and Intelligence -- 2.11.1 When We Choose Versus When We Select -- 2.11.2 Voluntary Activities -- 2.11.3 Sapiens' Choice Making Resulting in Survival and Supremacy -- 2.11.4 Choosy Innovators -- 2.11.5 Choosing to Become Successful (Goal-Driven Systems) -- 2.12 Empowering Others to Choose -- 2.13 Cost Associated with Choosing -- 2.14 Choose, Let Others Choose and Empower Them to Choose -- 2.15 Choice Architects -- 2.16 Choice Models-Looking at Choosing as a Constraint Satisfaction Problem -- 2.17 Dynamic and Static Choice Models -- 2.18 Uncertainty and Choosing -- 2.18.1 Choice Experiments -- 2.18.2 Top of Mountain and Hazy Glass Theory -- 2.18.3 Seed-Based Exploration -- 2.19 Summary -- References -- 3 ML of Choosing: Architecting Intelligent Choice Framework -- 3.1 Who is a Choice Architect? -- 3.2 Stories Choice Architects -- 3.3 Those Who Help You to Choose 3.4 Architecting Choice Routes -- 3.5 Choice Flow -- 3.6 Choice Architecture to Revolutionize Thinking -- 3.7 Mastering Choice Architecting: Associating Algorithms -- 3.8 Creating Logical Choices for Customers: -- 3.9 Making Customers to Choose What You Would Love to Choose Them -- 3.10 Context-Based Choice Making and Scenario Analysis -- 3.11 Systemic Choice Architect -- 3.12 Summary -- References -- 4 Machine Learning of Choice Economics -- 4.1 ML of Choice Economics -- 4.2 Learning Based on the Impact of Choosing -- 4.3 Creating Experiential Bias or Availability Bias for Learning -- 4.4 Event Anchoring-Based Learning -- 4.4.1 Event Sequencing -- 4.5 First Movers ... -- 4.6 Creation of Legal Choices and Learning by Choice Elimination -- 4.7 Choice Impact-Based Learning -- 4.8 Learning to Set Target for Choosing -- 4.8.1 Leverage Point-Based Learning -- 4.9 Learning Based on Impact of Choosing -- 4.9.1 Rules for Choosing-Based ML -- 4.10 Choice Evolution -- 4.10.1 Evolutionary Choice Systems -- 4.10.2 Choice-Driven Crossover -- 4.10.3 Choice Association -- 4.10.4 Competitive Greedy Choosing -- 4.11 Choice Making in Uncertain Scenario -- 4.12 Core Choices and Supporting Choices (Decision About Learning Points) -- 4.13 Choice Projections-Connecting Peaks of Mountains (Multi-goal Architecture) -- 4.13.1 Choice Intelligence and Choice Processing -- 4.13.2 Societal Choice Computing -- 4.14 Conformation Choice Computing -- 4.14.1 Machine Learning Models -- 4.15 Summary -- References -- 5 Co-operative Choosing: Machines and Humans Thinking Together to Choose the Right Way -- 5.1 Introduction -- 5.2 Co-operative Choosing (Choosing Together) -- 5.3 Choice Co-operation -- 5.3.1 Learning to Choose -- 5.4 Cognitive Choice Models -- 5.5 Competitive, Ranking and Hybrid Models in Co-operative Choosing -- 5.6 Utility Theory for Choosing 5.7 Co-operative Greedy Choice Traversal -- 5.8 Choice Models -- 5.8.1 Causal Cognition -- 5.8.2 Unifying Cognition -- 5.8.3 Binary Choice Instinct -- 5.8.4 Data, Average, Spread and Instinct: Decoding Mean, Median and Distribution of Choosing -- 5.8.5 Associative Choice Models -- 5.8.6 Entropy-Based Choice Models -- 5.8.7 Discrete Choice Models -- 5.8.8 Weighted Additive Choice Models -- 5.8.9 Inter Temporal Choice Models -- 5.8.10 Random Utility Choice Models -- 5.8.11 Hierarchical Choice Models -- 5.8.12 Co-operative Choice Models -- 5.8.13 Randomness in Choosing -- 5.9 Co-operative Choosing to Escape from Noise and Still Preserving Diversity -- 5.10 Summary -- References -- 6 Choice Architecture-Machine Learning Framework -- 6.1 Choice Architecture -- 6.2 Choice Catalyst Algorithm -- 6.3 Choice Architecture and Machine Learning -- 6.4 Identifying Chance Maximization Point -- 6.5 Option Eliminator-Learning to Eliminate -- 6.6 Embedding Emotions, Kansei Engineering (Emotional Computing for Choosing) -- 6.7 State Transitions to 'Choice-State' -- 6.8 Choice Learning Models -- 6.9 Behavioural System and Choosing -- 6.10 Choice Learning-Based Recommender System -- 6.11 Multi Choice Scenarios -- 6.12 Summary -- References -- 7 Artificial Consciousness and Choosing (Towards Conscious Choice Machines) -- 7.1 Introduction -- 7.2 Decoding Consciousness of Choosing -- 7.3 Artificial Conscious Choice Agent -- 7.4 Designing a Conscious Choice Agent (CCA) -- 7.5 Heuristic Choice Strategies -- 7.6 Exploratory Consciousness -- 7.7 Choice Architecting and Recommending Products or Services -- 7.8 Conscious Choice Architecting -- 7.9 Conscious Choice and Evolutionary Learning -- 7.10 Reinforcement and Deep Reinforcement Learning -- 7.11 Dealing with Local Maxima and Minima -- 7.12 Summary -- References -- 8 Choice Computing and Creativity 8.1 Introduction-Creative Contributions: Human Choosing and Machine Choosing -- 8.2 Human Creative Choosing Process -- 8.3 Concept Learning and Verbal Learning for Choosing -- 8.4 What is the Difference Between Choice and a Creative Choice? -- 8.5 Creative Choosing Machines -- 8.6 Creative Choice Agents -- 8.7 Discrimination Learning and Creative Choosing -- 8.8 Unconscious Blind Choosing to Unconscious Effective Choosing -- 8.9 Creative Choosing Models -- 8.10 Concept Maps for Choosing -- 8.11 Human Learning Inspired Creative Machine-Choosing Models -- 8.11.1 Reinforcement Choice Models -- 8.12 Creative Choice Learning Models -- 8.13 Creativity Moments and Creativity Points -- 8.14 Creative Agents and Creative Collaborative Intelligence -- 8.15 Summary -- References -- 9 Experimental Choice Computing and Choice Learning Through Real-Life Stories -- 9.1 Summary -- 9.2 In Education -- 9.3 Health Care -- 9.4 Social Good -- 9.5 Finance -- 9.6 Miscellaneous -- 9.7 Other Applications Can Be Thought of -- 9.8 Summary -- References -- 10 Choice Computing and Beyond -- Index Computer vision Erscheint auch als Druck-Ausgabe Kulkarni, Parag Choice Computing: Machine Learning and Systemic Economics for Choosing Singapore : Springer,c2022 9789811940583 |
spellingShingle | Kulkarni, Parag Choice Computing Machine Learning and Systemic Economics for Choosing Intro -- Foreword -- Preface: Embarking on the Journey of Choice... -- In Gratitude -- Praise for Choice Computing: Machine Learning and Systemic Economics for Choosing -- Contents -- About the Author -- 1 Introduction: Choosing-What is a Great Deal? -- 1.1 Choosing -- 1.2 Choosing and Learning -- 1.3 Organization of Book -- 1.4 Before Moving Ahead -- 1.5 Knowing What is It About -- References -- 2 Choice Modelling: Where Choosing Meets Computing -- 2.1 Introduction-Unfolding Choice Economics and Choice Computing -- 2.2 Mathematics of Choosing -- 2.3 Economic Impact of Choosing -- 2.4 Choice Paths -- 2.4.1 Three Pillars of Choosing -- 2.5 Rational Choices -- 2.6 Basics of Artificial Intelligence (AI) and Machine Learning (ML) -- 2.6.1 Traditional Algorithms to Reinforcement Learning -- 2.7 Bio-inspired Machine Learning -- 2.8 Choosing Inspired Machine Learning -- 2.9 Philosophy of Choosing -- 2.10 Context-Based ML -- 2.11 Choosing: Manifestation of Freedom, Youthfulness and Intelligence -- 2.11.1 When We Choose Versus When We Select -- 2.11.2 Voluntary Activities -- 2.11.3 Sapiens' Choice Making Resulting in Survival and Supremacy -- 2.11.4 Choosy Innovators -- 2.11.5 Choosing to Become Successful (Goal-Driven Systems) -- 2.12 Empowering Others to Choose -- 2.13 Cost Associated with Choosing -- 2.14 Choose, Let Others Choose and Empower Them to Choose -- 2.15 Choice Architects -- 2.16 Choice Models-Looking at Choosing as a Constraint Satisfaction Problem -- 2.17 Dynamic and Static Choice Models -- 2.18 Uncertainty and Choosing -- 2.18.1 Choice Experiments -- 2.18.2 Top of Mountain and Hazy Glass Theory -- 2.18.3 Seed-Based Exploration -- 2.19 Summary -- References -- 3 ML of Choosing: Architecting Intelligent Choice Framework -- 3.1 Who is a Choice Architect? -- 3.2 Stories Choice Architects -- 3.3 Those Who Help You to Choose 3.4 Architecting Choice Routes -- 3.5 Choice Flow -- 3.6 Choice Architecture to Revolutionize Thinking -- 3.7 Mastering Choice Architecting: Associating Algorithms -- 3.8 Creating Logical Choices for Customers: -- 3.9 Making Customers to Choose What You Would Love to Choose Them -- 3.10 Context-Based Choice Making and Scenario Analysis -- 3.11 Systemic Choice Architect -- 3.12 Summary -- References -- 4 Machine Learning of Choice Economics -- 4.1 ML of Choice Economics -- 4.2 Learning Based on the Impact of Choosing -- 4.3 Creating Experiential Bias or Availability Bias for Learning -- 4.4 Event Anchoring-Based Learning -- 4.4.1 Event Sequencing -- 4.5 First Movers ... -- 4.6 Creation of Legal Choices and Learning by Choice Elimination -- 4.7 Choice Impact-Based Learning -- 4.8 Learning to Set Target for Choosing -- 4.8.1 Leverage Point-Based Learning -- 4.9 Learning Based on Impact of Choosing -- 4.9.1 Rules for Choosing-Based ML -- 4.10 Choice Evolution -- 4.10.1 Evolutionary Choice Systems -- 4.10.2 Choice-Driven Crossover -- 4.10.3 Choice Association -- 4.10.4 Competitive Greedy Choosing -- 4.11 Choice Making in Uncertain Scenario -- 4.12 Core Choices and Supporting Choices (Decision About Learning Points) -- 4.13 Choice Projections-Connecting Peaks of Mountains (Multi-goal Architecture) -- 4.13.1 Choice Intelligence and Choice Processing -- 4.13.2 Societal Choice Computing -- 4.14 Conformation Choice Computing -- 4.14.1 Machine Learning Models -- 4.15 Summary -- References -- 5 Co-operative Choosing: Machines and Humans Thinking Together to Choose the Right Way -- 5.1 Introduction -- 5.2 Co-operative Choosing (Choosing Together) -- 5.3 Choice Co-operation -- 5.3.1 Learning to Choose -- 5.4 Cognitive Choice Models -- 5.5 Competitive, Ranking and Hybrid Models in Co-operative Choosing -- 5.6 Utility Theory for Choosing 5.7 Co-operative Greedy Choice Traversal -- 5.8 Choice Models -- 5.8.1 Causal Cognition -- 5.8.2 Unifying Cognition -- 5.8.3 Binary Choice Instinct -- 5.8.4 Data, Average, Spread and Instinct: Decoding Mean, Median and Distribution of Choosing -- 5.8.5 Associative Choice Models -- 5.8.6 Entropy-Based Choice Models -- 5.8.7 Discrete Choice Models -- 5.8.8 Weighted Additive Choice Models -- 5.8.9 Inter Temporal Choice Models -- 5.8.10 Random Utility Choice Models -- 5.8.11 Hierarchical Choice Models -- 5.8.12 Co-operative Choice Models -- 5.8.13 Randomness in Choosing -- 5.9 Co-operative Choosing to Escape from Noise and Still Preserving Diversity -- 5.10 Summary -- References -- 6 Choice Architecture-Machine Learning Framework -- 6.1 Choice Architecture -- 6.2 Choice Catalyst Algorithm -- 6.3 Choice Architecture and Machine Learning -- 6.4 Identifying Chance Maximization Point -- 6.5 Option Eliminator-Learning to Eliminate -- 6.6 Embedding Emotions, Kansei Engineering (Emotional Computing for Choosing) -- 6.7 State Transitions to 'Choice-State' -- 6.8 Choice Learning Models -- 6.9 Behavioural System and Choosing -- 6.10 Choice Learning-Based Recommender System -- 6.11 Multi Choice Scenarios -- 6.12 Summary -- References -- 7 Artificial Consciousness and Choosing (Towards Conscious Choice Machines) -- 7.1 Introduction -- 7.2 Decoding Consciousness of Choosing -- 7.3 Artificial Conscious Choice Agent -- 7.4 Designing a Conscious Choice Agent (CCA) -- 7.5 Heuristic Choice Strategies -- 7.6 Exploratory Consciousness -- 7.7 Choice Architecting and Recommending Products or Services -- 7.8 Conscious Choice Architecting -- 7.9 Conscious Choice and Evolutionary Learning -- 7.10 Reinforcement and Deep Reinforcement Learning -- 7.11 Dealing with Local Maxima and Minima -- 7.12 Summary -- References -- 8 Choice Computing and Creativity 8.1 Introduction-Creative Contributions: Human Choosing and Machine Choosing -- 8.2 Human Creative Choosing Process -- 8.3 Concept Learning and Verbal Learning for Choosing -- 8.4 What is the Difference Between Choice and a Creative Choice? -- 8.5 Creative Choosing Machines -- 8.6 Creative Choice Agents -- 8.7 Discrimination Learning and Creative Choosing -- 8.8 Unconscious Blind Choosing to Unconscious Effective Choosing -- 8.9 Creative Choosing Models -- 8.10 Concept Maps for Choosing -- 8.11 Human Learning Inspired Creative Machine-Choosing Models -- 8.11.1 Reinforcement Choice Models -- 8.12 Creative Choice Learning Models -- 8.13 Creativity Moments and Creativity Points -- 8.14 Creative Agents and Creative Collaborative Intelligence -- 8.15 Summary -- References -- 9 Experimental Choice Computing and Choice Learning Through Real-Life Stories -- 9.1 Summary -- 9.2 In Education -- 9.3 Health Care -- 9.4 Social Good -- 9.5 Finance -- 9.6 Miscellaneous -- 9.7 Other Applications Can Be Thought of -- 9.8 Summary -- References -- 10 Choice Computing and Beyond -- Index Computer vision |
title | Choice Computing Machine Learning and Systemic Economics for Choosing |
title_auth | Choice Computing Machine Learning and Systemic Economics for Choosing |
title_exact_search | Choice Computing Machine Learning and Systemic Economics for Choosing |
title_exact_search_txtP | Choice Computing Machine Learning and Systemic Economics for Choosing |
title_full | Choice Computing Machine Learning and Systemic Economics for Choosing |
title_fullStr | Choice Computing Machine Learning and Systemic Economics for Choosing |
title_full_unstemmed | Choice Computing Machine Learning and Systemic Economics for Choosing |
title_short | Choice Computing |
title_sort | choice computing machine learning and systemic economics for choosing |
title_sub | Machine Learning and Systemic Economics for Choosing |
topic | Computer vision |
topic_facet | Computer vision |
work_keys_str_mv | AT kulkarniparag choicecomputingmachinelearningandsystemiceconomicsforchoosing |