Geometric aspects of functional analysis: Israel Seminar (GAFA) 2020-2022
This book reflects general trends in the study of geometric aspects of functional analysis, understood in a broad sense. A classical theme in the local theory of Banach spaces is the study of probability measures in high dimension and the concentration of measure phenomenon. Here this phenomenon is...
Gespeichert in:
Körperschaft: | |
---|---|
Weitere Verfasser: | , , , |
Format: | Tagungsbericht Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2023]
|
Schriftenreihe: | Lecture notes in mathematics
Volume 2327 |
Zusammenfassung: | This book reflects general trends in the study of geometric aspects of functional analysis, understood in a broad sense. A classical theme in the local theory of Banach spaces is the study of probability measures in high dimension and the concentration of measure phenomenon. Here this phenomenon is approached from different angles, including through analysis on the Hamming cube, and via quantitative estimates in the Central Limit Theorem under thin-shell and related assumptions. Classical convexity theory plays a central role in this volume, as well as the study of geometric inequalities. These inequalities, which are somewhat in spirit of the Brunn-Minkowski inequality, in turn shed light on convexity and on the geometry of Euclidean space. Probability measures with convexity or curvature properties, such as log-concave distributions, occupy an equally central role and arise in the study of Gaussian measures and non-trivial properties of the heat flow in Euclidean spaces. Also discussed are interactions of this circle of ideas with linear programming and sampling algorithms, including the solution of a question in online learning algorithms using a classical convexity construction from the 19th century. |
Beschreibung: | viii, 438 Seiten Diagramme |
ISBN: | 9783031262999 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV049408096 | ||
003 | DE-604 | ||
005 | 20240719 | ||
007 | t | ||
008 | 231113s2023 sz |||| |||| 10||| eng d | ||
020 | |a 9783031262999 |c pbk |9 978-3-031-26299-9 | ||
024 | 7 | |a 10.1007/978-3-031-26300-2 |2 doi | |
035 | |a (OCoLC)1407496211 | ||
035 | |a (DE-599)KXP1865719242 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-188 |a DE-83 | ||
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a 60-06 |2 msc/2020 | ||
084 | |a 46-06 |2 msc/2020 | ||
245 | 1 | 0 | |a Geometric aspects of functional analysis |b Israel Seminar (GAFA) 2020-2022 |c Ronen Eldan ; Bo'az Klartag ; Alexander Litvak ; Emanuel Milman, editors |
264 | 1 | |a Cham |b Springer |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a viii, 438 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v Volume 2327 | |
520 | 3 | |a This book reflects general trends in the study of geometric aspects of functional analysis, understood in a broad sense. A classical theme in the local theory of Banach spaces is the study of probability measures in high dimension and the concentration of measure phenomenon. Here this phenomenon is approached from different angles, including through analysis on the Hamming cube, and via quantitative estimates in the Central Limit Theorem under thin-shell and related assumptions. Classical convexity theory plays a central role in this volume, as well as the study of geometric inequalities. These inequalities, which are somewhat in spirit of the Brunn-Minkowski inequality, in turn shed light on convexity and on the geometry of Euclidean space. Probability measures with convexity or curvature properties, such as log-concave distributions, occupy an equally central role and arise in the study of Gaussian measures and non-trivial properties of the heat flow in Euclidean spaces. Also discussed are interactions of this circle of ideas with linear programming and sampling algorithms, including the solution of a question in online learning algorithms using a classical convexity construction from the 19th century. | |
700 | 1 | |a Eldan, Ronen |0 (DE-588)1306208467 |4 edt | |
700 | 1 | |a Klartag, Bo'az |d 1978- |0 (DE-588)1064116639 |4 edt | |
700 | 1 | |a Litvak, Aleksandr G. |0 (DE-588)1159366330 |4 edt | |
700 | 1 | |a Milman, Emanuel |0 (DE-588)1139442570 |4 edt | |
711 | 2 | |a GAFA (Veranstaltung) |d 2020-2022 |c Tel Aviv |0 (DE-588)1306204925 |4 aut | |
776 | 0 | |z 9783031263002 |c (ebook) | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |t Geometric Aspects of Functional Analysis |b 1st ed. 2023. |d Cham : Springer International Publishing, 2023 |h 1 Online-Ressource(VIII, 440 p. 3 illus.) |z 978-3-031-26300-2 |w (DE-604)BV049357933 |
830 | 0 | |a Lecture notes in mathematics |v Volume 2327 |w (DE-604)BV000676446 |9 2327 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034735184 |
Datensatz im Suchindex
_version_ | 1805088012906790912 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Eldan, Ronen Klartag, Bo'az 1978- Litvak, Aleksandr G. Milman, Emanuel |
author2_role | edt edt edt edt |
author2_variant | r e re b k bk a g l ag agl e m em |
author_GND | (DE-588)1306208467 (DE-588)1064116639 (DE-588)1159366330 (DE-588)1139442570 |
author_corporate | GAFA (Veranstaltung) |
author_corporate_role | aut |
author_facet | Eldan, Ronen Klartag, Bo'az 1978- Litvak, Aleksandr G. Milman, Emanuel GAFA (Veranstaltung) |
building | Verbundindex |
bvnumber | BV049408096 |
classification_rvk | SI 850 |
ctrlnum | (OCoLC)1407496211 (DE-599)KXP1865719242 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Conference Proceeding Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV049408096</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240719</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">231113s2023 sz |||| |||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031262999</subfield><subfield code="c">pbk</subfield><subfield code="9">978-3-031-26299-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-031-26300-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1407496211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1865719242</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60-06</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">46-06</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric aspects of functional analysis</subfield><subfield code="b">Israel Seminar (GAFA) 2020-2022</subfield><subfield code="c">Ronen Eldan ; Bo'az Klartag ; Alexander Litvak ; Emanuel Milman, editors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 438 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">Volume 2327</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book reflects general trends in the study of geometric aspects of functional analysis, understood in a broad sense. A classical theme in the local theory of Banach spaces is the study of probability measures in high dimension and the concentration of measure phenomenon. Here this phenomenon is approached from different angles, including through analysis on the Hamming cube, and via quantitative estimates in the Central Limit Theorem under thin-shell and related assumptions. Classical convexity theory plays a central role in this volume, as well as the study of geometric inequalities. These inequalities, which are somewhat in spirit of the Brunn-Minkowski inequality, in turn shed light on convexity and on the geometry of Euclidean space. Probability measures with convexity or curvature properties, such as log-concave distributions, occupy an equally central role and arise in the study of Gaussian measures and non-trivial properties of the heat flow in Euclidean spaces. Also discussed are interactions of this circle of ideas with linear programming and sampling algorithms, including the solution of a question in online learning algorithms using a classical convexity construction from the 19th century.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eldan, Ronen</subfield><subfield code="0">(DE-588)1306208467</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klartag, Bo'az</subfield><subfield code="d">1978-</subfield><subfield code="0">(DE-588)1064116639</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Litvak, Aleksandr G.</subfield><subfield code="0">(DE-588)1159366330</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Milman, Emanuel</subfield><subfield code="0">(DE-588)1139442570</subfield><subfield code="4">edt</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">GAFA (Veranstaltung)</subfield><subfield code="d">2020-2022</subfield><subfield code="c">Tel Aviv</subfield><subfield code="0">(DE-588)1306204925</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9783031263002</subfield><subfield code="c">(ebook)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="t">Geometric Aspects of Functional Analysis</subfield><subfield code="b">1st ed. 2023.</subfield><subfield code="d">Cham : Springer International Publishing, 2023</subfield><subfield code="h">1 Online-Ressource(VIII, 440 p. 3 illus.)</subfield><subfield code="z">978-3-031-26300-2</subfield><subfield code="w">(DE-604)BV049357933</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">Volume 2327</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">2327</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034735184</subfield></datafield></record></collection> |
id | DE-604.BV049408096 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:05:35Z |
indexdate | 2024-07-20T09:01:16Z |
institution | BVB |
institution_GND | (DE-588)1306204925 |
isbn | 9783031262999 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034735184 |
oclc_num | 1407496211 |
open_access_boolean | |
owner | DE-188 DE-83 |
owner_facet | DE-188 DE-83 |
physical | viii, 438 Seiten Diagramme |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Geometric aspects of functional analysis Israel Seminar (GAFA) 2020-2022 Ronen Eldan ; Bo'az Klartag ; Alexander Litvak ; Emanuel Milman, editors Cham Springer [2023] © 2023 viii, 438 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics Volume 2327 This book reflects general trends in the study of geometric aspects of functional analysis, understood in a broad sense. A classical theme in the local theory of Banach spaces is the study of probability measures in high dimension and the concentration of measure phenomenon. Here this phenomenon is approached from different angles, including through analysis on the Hamming cube, and via quantitative estimates in the Central Limit Theorem under thin-shell and related assumptions. Classical convexity theory plays a central role in this volume, as well as the study of geometric inequalities. These inequalities, which are somewhat in spirit of the Brunn-Minkowski inequality, in turn shed light on convexity and on the geometry of Euclidean space. Probability measures with convexity or curvature properties, such as log-concave distributions, occupy an equally central role and arise in the study of Gaussian measures and non-trivial properties of the heat flow in Euclidean spaces. Also discussed are interactions of this circle of ideas with linear programming and sampling algorithms, including the solution of a question in online learning algorithms using a classical convexity construction from the 19th century. Eldan, Ronen (DE-588)1306208467 edt Klartag, Bo'az 1978- (DE-588)1064116639 edt Litvak, Aleksandr G. (DE-588)1159366330 edt Milman, Emanuel (DE-588)1139442570 edt GAFA (Veranstaltung) 2020-2022 Tel Aviv (DE-588)1306204925 aut 9783031263002 (ebook) Erscheint auch als Online-Ausgabe Geometric Aspects of Functional Analysis 1st ed. 2023. Cham : Springer International Publishing, 2023 1 Online-Ressource(VIII, 440 p. 3 illus.) 978-3-031-26300-2 (DE-604)BV049357933 Lecture notes in mathematics Volume 2327 (DE-604)BV000676446 2327 |
spellingShingle | Geometric aspects of functional analysis Israel Seminar (GAFA) 2020-2022 Lecture notes in mathematics |
title | Geometric aspects of functional analysis Israel Seminar (GAFA) 2020-2022 |
title_auth | Geometric aspects of functional analysis Israel Seminar (GAFA) 2020-2022 |
title_exact_search | Geometric aspects of functional analysis Israel Seminar (GAFA) 2020-2022 |
title_exact_search_txtP | Geometric aspects of functional analysis Israel Seminar (GAFA) 2020-2022 |
title_full | Geometric aspects of functional analysis Israel Seminar (GAFA) 2020-2022 Ronen Eldan ; Bo'az Klartag ; Alexander Litvak ; Emanuel Milman, editors |
title_fullStr | Geometric aspects of functional analysis Israel Seminar (GAFA) 2020-2022 Ronen Eldan ; Bo'az Klartag ; Alexander Litvak ; Emanuel Milman, editors |
title_full_unstemmed | Geometric aspects of functional analysis Israel Seminar (GAFA) 2020-2022 Ronen Eldan ; Bo'az Klartag ; Alexander Litvak ; Emanuel Milman, editors |
title_short | Geometric aspects of functional analysis |
title_sort | geometric aspects of functional analysis israel seminar gafa 2020 2022 |
title_sub | Israel Seminar (GAFA) 2020-2022 |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT eldanronen geometricaspectsoffunctionalanalysisisraelseminargafa20202022 AT klartagboaz geometricaspectsoffunctionalanalysisisraelseminargafa20202022 AT litvakaleksandrg geometricaspectsoffunctionalanalysisisraelseminargafa20202022 AT milmanemanuel geometricaspectsoffunctionalanalysisisraelseminargafa20202022 AT gafaveranstaltungtelaviv geometricaspectsoffunctionalanalysisisraelseminargafa20202022 |