Deep learning for coders with fastai and PyTorch: Al applications without a PhD

Intro -- Copyright -- Table of Contents -- Preface -- Who This Book Is For -- What You Need to Know -- What You Will Learn -- O'Reilly Online Learning -- How to Contact Us -- Foreword -- Part I. Deep Learning in Practice -- Chapter 1. Your Deep Learning Journey -- Deep Learning Is for Everyone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Howard, Jeremy (VerfasserIn), Gugger, Sylvain (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo O'Reilly [2020]
Ausgabe:First edition
Schlagworte:
Online-Zugang:UBY01
Zusammenfassung:Intro -- Copyright -- Table of Contents -- Preface -- Who This Book Is For -- What You Need to Know -- What You Will Learn -- O'Reilly Online Learning -- How to Contact Us -- Foreword -- Part I. Deep Learning in Practice -- Chapter 1. Your Deep Learning Journey -- Deep Learning Is for Everyone -- Neural Networks: A Brief History -- Who We Are -- How to Learn Deep Learning -- Your Projects and Your Mindset -- The Software: PyTorch, fastai, and Jupyter (And Why It Doesn't Matter) -- Your First Model -- Getting a GPU Deep Learning Server -- Running Your First Notebook -- What Is Machine Learning? -- What Is a Neural Network? -- A Bit of Deep Learning Jargon -- Limitations Inherent to Machine Learning -- How Our Image Recognizer Works -- What Our Image Recognizer Learned -- Image Recognizers Can Tackle Non-Image Tasks -- Jargon Recap -- Deep Learning Is Not Just for Image Classification -- Validation Sets and Test Sets -- Use Judgment in Defining Test Sets -- A Choose Your Own Adventure Moment -- Questionnaire -- Further Research -- Chapter 2. From Model to Production -- The Practice of Deep Learning -- Starting Your Project -- The State of Deep Learning -- The Drivetrain Approach -- Gathering Data -- From Data to DataLoaders -- Data Augmentation -- Training Your Model, and Using It to Clean Your Data -- Turning Your Model into an Online Application -- Using the Model for Inference -- Creating a Notebook App from the Model -- Turning Your Notebook into a Real App -- Deploying Your App -- How to Avoid Disaster -- Unforeseen Consequences and Feedback Loops -- Get Writing! -- Questionnaire -- Further Research -- Chapter 3. Data Ethics -- Key Examples for Data Ethics -- Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits -- Feedback Loops: YouTube's Recommendation System -- Bias: Professor Latanya Sweeney "Arrested" -- Why Does This Matter?.
Beschreibung:Description based on publisher supplied metadata and other sources
Beschreibung:1 Online-Ressource (xxiv, 594 Seiten) Illustrationen, Diagramme
ISBN:9781492045496