Deep learning for coders with fastai and PyTorch: Al applications without a PhD
Intro -- Copyright -- Table of Contents -- Preface -- Who This Book Is For -- What You Need to Know -- What You Will Learn -- O'Reilly Online Learning -- How to Contact Us -- Foreword -- Part I. Deep Learning in Practice -- Chapter 1. Your Deep Learning Journey -- Deep Learning Is for Everyone...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo
O'Reilly
[2020]
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | UBY01 |
Zusammenfassung: | Intro -- Copyright -- Table of Contents -- Preface -- Who This Book Is For -- What You Need to Know -- What You Will Learn -- O'Reilly Online Learning -- How to Contact Us -- Foreword -- Part I. Deep Learning in Practice -- Chapter 1. Your Deep Learning Journey -- Deep Learning Is for Everyone -- Neural Networks: A Brief History -- Who We Are -- How to Learn Deep Learning -- Your Projects and Your Mindset -- The Software: PyTorch, fastai, and Jupyter (And Why It Doesn't Matter) -- Your First Model -- Getting a GPU Deep Learning Server -- Running Your First Notebook -- What Is Machine Learning? -- What Is a Neural Network? -- A Bit of Deep Learning Jargon -- Limitations Inherent to Machine Learning -- How Our Image Recognizer Works -- What Our Image Recognizer Learned -- Image Recognizers Can Tackle Non-Image Tasks -- Jargon Recap -- Deep Learning Is Not Just for Image Classification -- Validation Sets and Test Sets -- Use Judgment in Defining Test Sets -- A Choose Your Own Adventure Moment -- Questionnaire -- Further Research -- Chapter 2. From Model to Production -- The Practice of Deep Learning -- Starting Your Project -- The State of Deep Learning -- The Drivetrain Approach -- Gathering Data -- From Data to DataLoaders -- Data Augmentation -- Training Your Model, and Using It to Clean Your Data -- Turning Your Model into an Online Application -- Using the Model for Inference -- Creating a Notebook App from the Model -- Turning Your Notebook into a Real App -- Deploying Your App -- How to Avoid Disaster -- Unforeseen Consequences and Feedback Loops -- Get Writing! -- Questionnaire -- Further Research -- Chapter 3. Data Ethics -- Key Examples for Data Ethics -- Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits -- Feedback Loops: YouTube's Recommendation System -- Bias: Professor Latanya Sweeney "Arrested" -- Why Does This Matter?. |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xxiv, 594 Seiten) Illustrationen, Diagramme |
ISBN: | 9781492045496 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV049405742 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 231110s2020 cc |||| o||u| ||||||eng d | ||
020 | |a 9781492045496 |9 978-1-4920-4549-6 | ||
035 | |a (ZDB-30-PQE)6240688 | ||
035 | |a (DE-599)KEP054349001 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a cc |c XB-CN |a xxu |c XD-US |a xxk |c XA-GB |a ja |c XB-JP | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
100 | 1 | |a Howard, Jeremy |e Verfasser |0 (DE-588)1220638293 |4 aut | |
245 | 1 | 0 | |a Deep learning for coders with fastai and PyTorch |b Al applications without a PhD |c Jeremy Howard and Sylvain Gugger |
250 | |a First edition | ||
264 | 1 | |a Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo |b O'Reilly |c [2020] | |
300 | |a 1 Online-Ressource (xxiv, 594 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | 3 | |a Intro -- Copyright -- Table of Contents -- Preface -- Who This Book Is For -- What You Need to Know -- What You Will Learn -- O'Reilly Online Learning -- How to Contact Us -- Foreword -- Part I. Deep Learning in Practice -- Chapter 1. Your Deep Learning Journey -- Deep Learning Is for Everyone -- Neural Networks: A Brief History -- Who We Are -- How to Learn Deep Learning -- Your Projects and Your Mindset -- The Software: PyTorch, fastai, and Jupyter (And Why It Doesn't Matter) -- Your First Model -- Getting a GPU Deep Learning Server -- Running Your First Notebook -- What Is Machine Learning? -- What Is a Neural Network? -- A Bit of Deep Learning Jargon -- Limitations Inherent to Machine Learning -- How Our Image Recognizer Works -- What Our Image Recognizer Learned -- Image Recognizers Can Tackle Non-Image Tasks -- Jargon Recap -- Deep Learning Is Not Just for Image Classification -- Validation Sets and Test Sets -- Use Judgment in Defining Test Sets -- A Choose Your Own Adventure Moment -- Questionnaire -- Further Research -- Chapter 2. From Model to Production -- The Practice of Deep Learning -- Starting Your Project -- The State of Deep Learning -- The Drivetrain Approach -- Gathering Data -- From Data to DataLoaders -- Data Augmentation -- Training Your Model, and Using It to Clean Your Data -- Turning Your Model into an Online Application -- Using the Model for Inference -- Creating a Notebook App from the Model -- Turning Your Notebook into a Real App -- Deploying Your App -- How to Avoid Disaster -- Unforeseen Consequences and Feedback Loops -- Get Writing! -- Questionnaire -- Further Research -- Chapter 3. Data Ethics -- Key Examples for Data Ethics -- Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits -- Feedback Loops: YouTube's Recommendation System -- Bias: Professor Latanya Sweeney "Arrested" -- Why Does This Matter?. | |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 1 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | 2 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Gugger, Sylvain |e Verfasser |0 (DE-588)1220638439 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |t Deep learning for coders with fastai and PyTorch |b First edition |d Beijing : O'Reilly, 2020 |h xxiv, 594 Seiten |z 9781492045526 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034732882 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=6240688 |l UBY01 |p ZDB-30-PQE |q UBY01_Einzelkauf23 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186128110059520 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Howard, Jeremy Gugger, Sylvain |
author_GND | (DE-588)1220638293 (DE-588)1220638439 |
author_facet | Howard, Jeremy Gugger, Sylvain |
author_role | aut aut |
author_sort | Howard, Jeremy |
author_variant | j h jh s g sg |
building | Verbundindex |
bvnumber | BV049405742 |
classification_rvk | ST 250 ST 300 ST 302 |
collection | ZDB-30-PQE |
ctrlnum | (ZDB-30-PQE)6240688 (DE-599)KEP054349001 |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03898nmm a2200457 c 4500</leader><controlfield tag="001">BV049405742</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231110s2020 cc |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492045496</subfield><subfield code="9">978-1-4920-4549-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)6240688</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP054349001</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">cc</subfield><subfield code="c">XB-CN</subfield><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield><subfield code="a">ja</subfield><subfield code="c">XB-JP</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Howard, Jeremy</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1220638293</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning for coders with fastai and PyTorch</subfield><subfield code="b">Al applications without a PhD</subfield><subfield code="c">Jeremy Howard and Sylvain Gugger</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiv, 594 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Intro -- Copyright -- Table of Contents -- Preface -- Who This Book Is For -- What You Need to Know -- What You Will Learn -- O'Reilly Online Learning -- How to Contact Us -- Foreword -- Part I. Deep Learning in Practice -- Chapter 1. Your Deep Learning Journey -- Deep Learning Is for Everyone -- Neural Networks: A Brief History -- Who We Are -- How to Learn Deep Learning -- Your Projects and Your Mindset -- The Software: PyTorch, fastai, and Jupyter (And Why It Doesn't Matter) -- Your First Model -- Getting a GPU Deep Learning Server -- Running Your First Notebook -- What Is Machine Learning? -- What Is a Neural Network? -- A Bit of Deep Learning Jargon -- Limitations Inherent to Machine Learning -- How Our Image Recognizer Works -- What Our Image Recognizer Learned -- Image Recognizers Can Tackle Non-Image Tasks -- Jargon Recap -- Deep Learning Is Not Just for Image Classification -- Validation Sets and Test Sets -- Use Judgment in Defining Test Sets -- A Choose Your Own Adventure Moment -- Questionnaire -- Further Research -- Chapter 2. From Model to Production -- The Practice of Deep Learning -- Starting Your Project -- The State of Deep Learning -- The Drivetrain Approach -- Gathering Data -- From Data to DataLoaders -- Data Augmentation -- Training Your Model, and Using It to Clean Your Data -- Turning Your Model into an Online Application -- Using the Model for Inference -- Creating a Notebook App from the Model -- Turning Your Notebook into a Real App -- Deploying Your App -- How to Avoid Disaster -- Unforeseen Consequences and Feedback Loops -- Get Writing! -- Questionnaire -- Further Research -- Chapter 3. Data Ethics -- Key Examples for Data Ethics -- Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits -- Feedback Loops: YouTube's Recommendation System -- Bias: Professor Latanya Sweeney "Arrested" -- Why Does This Matter?.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gugger, Sylvain</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1220638439</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="t">Deep learning for coders with fastai and PyTorch</subfield><subfield code="b">First edition</subfield><subfield code="d">Beijing : O'Reilly, 2020</subfield><subfield code="h">xxiv, 594 Seiten</subfield><subfield code="z">9781492045526</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034732882</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=6240688</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBY01_Einzelkauf23</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049405742 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:05:02Z |
indexdate | 2024-07-10T10:06:12Z |
institution | BVB |
isbn | 9781492045496 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034732882 |
open_access_boolean | |
physical | 1 Online-Ressource (xxiv, 594 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE UBY01_Einzelkauf23 |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | O'Reilly |
record_format | marc |
spelling | Howard, Jeremy Verfasser (DE-588)1220638293 aut Deep learning for coders with fastai and PyTorch Al applications without a PhD Jeremy Howard and Sylvain Gugger First edition Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo O'Reilly [2020] 1 Online-Ressource (xxiv, 594 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Intro -- Copyright -- Table of Contents -- Preface -- Who This Book Is For -- What You Need to Know -- What You Will Learn -- O'Reilly Online Learning -- How to Contact Us -- Foreword -- Part I. Deep Learning in Practice -- Chapter 1. Your Deep Learning Journey -- Deep Learning Is for Everyone -- Neural Networks: A Brief History -- Who We Are -- How to Learn Deep Learning -- Your Projects and Your Mindset -- The Software: PyTorch, fastai, and Jupyter (And Why It Doesn't Matter) -- Your First Model -- Getting a GPU Deep Learning Server -- Running Your First Notebook -- What Is Machine Learning? -- What Is a Neural Network? -- A Bit of Deep Learning Jargon -- Limitations Inherent to Machine Learning -- How Our Image Recognizer Works -- What Our Image Recognizer Learned -- Image Recognizers Can Tackle Non-Image Tasks -- Jargon Recap -- Deep Learning Is Not Just for Image Classification -- Validation Sets and Test Sets -- Use Judgment in Defining Test Sets -- A Choose Your Own Adventure Moment -- Questionnaire -- Further Research -- Chapter 2. From Model to Production -- The Practice of Deep Learning -- Starting Your Project -- The State of Deep Learning -- The Drivetrain Approach -- Gathering Data -- From Data to DataLoaders -- Data Augmentation -- Training Your Model, and Using It to Clean Your Data -- Turning Your Model into an Online Application -- Using the Model for Inference -- Creating a Notebook App from the Model -- Turning Your Notebook into a Real App -- Deploying Your App -- How to Avoid Disaster -- Unforeseen Consequences and Feedback Loops -- Get Writing! -- Questionnaire -- Further Research -- Chapter 3. Data Ethics -- Key Examples for Data Ethics -- Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits -- Feedback Loops: YouTube's Recommendation System -- Bias: Professor Latanya Sweeney "Arrested" -- Why Does This Matter?. Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Deep learning (DE-588)1135597375 gnd rswk-swf Deep learning (DE-588)1135597375 s Python Programmiersprache (DE-588)4434275-5 s Künstliche Intelligenz (DE-588)4033447-8 s DE-604 Gugger, Sylvain Verfasser (DE-588)1220638439 aut Erscheint auch als Druck-Ausgabe Deep learning for coders with fastai and PyTorch First edition Beijing : O'Reilly, 2020 xxiv, 594 Seiten 9781492045526 |
spellingShingle | Howard, Jeremy Gugger, Sylvain Deep learning for coders with fastai and PyTorch Al applications without a PhD Künstliche Intelligenz (DE-588)4033447-8 gnd Python Programmiersprache (DE-588)4434275-5 gnd Deep learning (DE-588)1135597375 gnd |
subject_GND | (DE-588)4033447-8 (DE-588)4434275-5 (DE-588)1135597375 |
title | Deep learning for coders with fastai and PyTorch Al applications without a PhD |
title_auth | Deep learning for coders with fastai and PyTorch Al applications without a PhD |
title_exact_search | Deep learning for coders with fastai and PyTorch Al applications without a PhD |
title_exact_search_txtP | Deep learning for coders with fastai and PyTorch Al applications without a PhD |
title_full | Deep learning for coders with fastai and PyTorch Al applications without a PhD Jeremy Howard and Sylvain Gugger |
title_fullStr | Deep learning for coders with fastai and PyTorch Al applications without a PhD Jeremy Howard and Sylvain Gugger |
title_full_unstemmed | Deep learning for coders with fastai and PyTorch Al applications without a PhD Jeremy Howard and Sylvain Gugger |
title_short | Deep learning for coders with fastai and PyTorch |
title_sort | deep learning for coders with fastai and pytorch al applications without a phd |
title_sub | Al applications without a PhD |
topic | Künstliche Intelligenz (DE-588)4033447-8 gnd Python Programmiersprache (DE-588)4434275-5 gnd Deep learning (DE-588)1135597375 gnd |
topic_facet | Künstliche Intelligenz Python Programmiersprache Deep learning |
work_keys_str_mv | AT howardjeremy deeplearningforcoderswithfastaiandpytorchalapplicationswithoutaphd AT guggersylvain deeplearningforcoderswithfastaiandpytorchalapplicationswithoutaphd |