Introduction to Finite Element Methods:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Springer Vieweg
[2024]
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Auszug Inhaltsverzeichnis |
Beschreibung: | XIV, 443 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm |
ISBN: | 9783658427412 3658427418 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV049396631 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 231106s2024 gw a||| |||| 00||| eng d | ||
015 | |a 23,N32 |2 dnb | ||
016 | 7 | |a 1297845773 |2 DE-101 | |
020 | |a 9783658427412 |c : EUR 80.24 (DE) (freier Preis), EUR 82.49 (AT) (freier Preis), CHF 88.50 (freier Preis), EUR 74.99 |9 978-3-658-42741-2 | ||
020 | |a 3658427418 |9 3-658-42741-8 | ||
024 | 3 | |a 9783658427412 | |
028 | 5 | 2 | |a Bestellnummer: 978-3-658-42741-2 |
028 | 5 | 2 | |a Bestellnummer: 89085270 |
035 | |a (OCoLC)1409130167 | ||
035 | |a (DE-599)DNB1297845773 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-HE | ||
049 | |a DE-1050 | ||
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
084 | |8 1\p |a 624 |2 23sdnb | ||
100 | 1 | |a Dinkler, Dieter |e Verfasser |0 (DE-588)1021753343 |4 aut | |
245 | 1 | 0 | |a Introduction to Finite Element Methods |c Dieter Dinkler, Ursula Kowalsky |
264 | 1 | |a Wiesbaden |b Springer Vieweg |c [2024] | |
300 | |a XIV, 443 Seiten |b Illustrationen, Diagramme |c 21 cm x 14.8 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
653 | |a FEM | ||
653 | |a Heat Conduction | ||
653 | |a Menbrane Structures | ||
653 | |a Bending Structures | ||
653 | |a Kirchoff's Plates | ||
653 | |a Isoparametric Elements | ||
653 | |a Error Estimation | ||
689 | 0 | 0 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kowalsky, Ursula |e Verfasser |0 (DE-588)1251872514 |4 aut | |
710 | 2 | |a Springer Fachmedien Wiesbaden |0 (DE-588)1043386068 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-658-42742-9 |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=8230c1f9200149fbb1eef049776e29f9&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m X:MVB |u https://link.springer.com/978-3-658-42741-2 |3 Auszug |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034723930&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-034723930 | ||
883 | 1 | |8 1\p |a vlb |d 20230801 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1804186110535925760 |
---|---|
adam_text | FOUNDATIONS
1
1
INTRODUCTION
3
1.1
GOVERNING
EQUATIONSAND
APPROXIMATE
SOLUTION
.................................
7
1.2
GENERAL
ASPECTS
CONCERNING
THE
FINITE
ELEMENT
METHOD
...................
8
1.3
A
COMPARISON
OF
EXACT
SOLUTION
AND
APPROXIMATE
SOLUTION
.............
11
2
DISCRETIZATION
OF
THE
WORK
EQUATION
19
2.1
PRINCIPLE
OF
VIRTUAL
DISPLACEMENTS
......................................................
19
2.2
PRINCIPLE
OF
VIRTUAL
FORCES
....................................................................
25
2.3
THE
GENERAL
PROCEDURE
TO
SET
UP
THE
ELEMENT
MATRICES
..................
28
2.4
SHAPE
FUNCTIONS
AND
CONVERGENCE
CRITERIA
........................................
38
3
STRUCTURE
AND
SOLUTION
OF
THE
SYSTEM
OF
EQUATIONS
51
3.1
REAL
AND
VIRTUAL
NODAL
DISPLACEMENTS
...............................................
52
3.2
EQUATIONS
OF
CONDITION
......................................................................
52
3.3
STRUCTURE
OF
THE
SYSTEM
OF
EQUATIONS
................................................
53
3.4
ASSEMBLY
OF
THE
STIFFNESS
MATRIX
OF
THE
ENTIRE
SYSTEM
.....................
55
3.5
THE
STORAGE
AND
SOLUTION
OF
THE
SYSTEM
OF
EQUATIONS
.......................
58
3.6
THE
OPTIMIZATION
OF
THE
BANDWIDTH
....................................................
59
3.7
THE
FULFILLMENT
OF
DIRICHLET
BOUNDARY
CONDITIONS
.............................
61
4
HEAT
CONDUCTION
63
4.1
HEAT
CONDUCTION
AT
ONE-DIMENSIONAL
DESCRIPTION
...........................
63
4.2
HEAT
CONDUCTION
REGARDING
TWO
SPATIAL
DIMENSIONS
.......................
69
4.3
EXAMPLE
OF
USE
.....................................................................................
77
5
MEMBRANE
STRUCTURES
81
5.1
RECTANGULAR
ELEMENTS
REGARDING
PLANE
STRESS
SITUATION
...................
81
5.2
RECTANGULAR
ELEMENT
COMPRISING
MODIFIED
SHEAR
STRAINS
.................
96
5.3
PLANE
STRAIN
............................................................................................
100
6
BENDING
STRUCTURES
101
6.1
ELEMENT
MATRICES
REGARDING
EULER-BERNOULLI
BEAMS
............................
101
6.2
KIRCHHOFF
PLATE
ELEMENT
WITH
16
DOF
..................................................
109
6.3
KIRCHHOFF
PLATE
ELEMENT
WITH
12
DOF
..................................................
126
6.4
THE
12
DOF
ELEMENT
EMPLOYING
A
WEAK
CONFORMITY
.......................
129
TRIANGULAR
ELEMENTS
133
7
TRIANGULAR
ELEMENTS
-
DESCRIPTION
OF
GEOMETRY
135
7.1
LOCAL
8-N-COORD
INATE
SYSTEM
..............................................................
135
7.2
DESCRIPTION
EMPLOYING
AREA
COORDINATES
............................................
140
8
TRIANGULAR
ELEMENTS
TO
DESCRIBE
HEAT
CONDUCTION
145
8.1
A
LINEAR
APPROACH
RELATED
TO
THE
8-N-COORD
INATE
SYSTEM
...............
145
8.2
EXAMPLE
OF
USE
........................................................................................
149
9
TRIANGULAR
ELEMENTS
FOR
MEMBRANE
STRUCTURES
153
9.1
LINEAR
SHAPE
FUNCTIONS
WITH
RESPECT
TO
8-N-COORDI
NATES
.................
153
9.2
DESCRIPTION
EMPLOYING
AREA
COORDINATES
X
A
,XB,X
C
.............................
158
9.3
QUADRATIC
APPROACH
EMPLOYING
8-N-COORDI
NATES
...............................
159
9.4
QUADRATIC
SHAPE
FUNCTIONS
USING
AREA
COORDINATES
...........................
166
9.5
A
COMPARISON
OF
STANDARD
ELEMENTS
....................................................
170
10
TRIANGULAR
ELEMENTS
FOR
KIRCHHOFF
PLATES
173
10.1
CHOICE
OF
SHAPE
FUNCTIONS
AND
NODAL
UNKNOWNS
..............................
173
10.2
COMPLETE
APPROACH
OF
THE
5TH
ORDER
...................................................
176
10.3
A
PLATE
ELEMENT
WITH
18
DOF
.............................................................
189
10.4
A
COMPARISON
OF
STANDARD
PLATE
ELEMENTS
.........................................
193
ISOPARAMETRIC
ELEMENTS
197
11
NUMERICAL
INTEGRATION
199
11.1
NUMERICAL
INTEGRATION
USING
GAUSS-LEGENDRE
QUADRATURE
.................
200
11.2
NUMERICAL
INTEGRATION
APPLIED
TO
MEMBRANE
ELEMENTS
.......................
204
11.3
TRIANGULAR
ELEMENTS
...............................................................................
212
12
ISOPARAMETRIC
ELEMENTS
215
12.1
DESCRIPTION
OF
THE
ELEMENT
GEOMETRY
.................
216
12.2
ISOPARAMETRIC
ELEMENTS
REGARDING
MEMBRANES
...................................
218
12.3
QUADRILATERAL
PLATE
ELEMENTS
................................................................
223
HYBRID
QUADRILATERAL
ELEMENTS
229
13
HYBRID
FINITE
ELEMENTS
231
13.1
MIXED
FORMULATION
OF
GOVERNING
EQUATIONS
........................................
234
13.2
MIXED
FORMULATION
OF
WORK
EQUATIONS
................................................
236
13.3
HYBRID
DISCRETIZATION
OF
WORK
EQUATIONS
....................................
242
14
HYBRID-MIXED
PLANE
STRESS
ELEMENTS
249
14.1
MIXED
PRINCIPLE
OF
WORK
FOR
PLANE
STRESS
STRUCTURES
.........................
249
14.2
WORK
EQUATIONS
OF
A
HYBRID
PLANE
STRESS
ELEMENT
............................
252
14.3
ELEMENT
STIFFNESS
MATRIX
.......................................................................
256
14.4
SUBSEQUENT
STRESS
ANALYSIS
...................................................................
257
14.5
LINEAR
SHAPE
FUNCTIONS
........................................................................
258
14.6
QUADRATIC
SHAPE
FUNCTIONS
..................................................................
261
14.7
LINEAR
APPROACHES
WITH
COUPLING
OF
DEGREES
OF
FREEDOM
.................
264
14.8
CONVERGENCE
BEHAVIOR
OF
THE
ELEMENTS
...............................................
268
15
HYBRID-MIXED
EULER-BERNOULLI
BEAM
ELEMENTS
273
15.1
MIXED
FORMULATION
EMPLOYING
FORCESAND
DISPLACEMENTS
.................
273
15.2
WORK
EQUATION
IN
HYBRID
FORMULATION
.................................................
277
15.3
ELEMENT
STIFFNESS
MATRIX
......................................................................
279
16
HYBRID-MIXED
KIRCHHOFF
PLATE
ELEMENTS
283
16.1
MIXED
PRINCIPLES
OF
WORK
CONCERNING
KIRCHHOFF
PLATES
.....................
283
16.2
HYBRID-MIXED
RECTANGULAR
PLATE
ELEMENT
..........................................
293
HYBRID
TRIANGULAR
PLATE
ELEMENTS
299
17
HYBRID
TRIANGULAR
PLATE
ELEMENTS
301
17.1
CUBIC
APPROACH
FOR
TRIANGULAR
PLATE
ELEMENTS
...................................
302
17.2
HYBRID-DISPLACEMENT
ELEMENTS
EMPLOYING
104-3
DOF
.....................
306
17.3
DISPLACEMENT-BASED
ELEMENT
WITH
WEAK
CONFORMITY
........................
314
18
HYBRID-MIXED
TRIANGULAR
PLATE
ELEMENTS
317
18.1
WORK
EQUATIONS
......................................................................................
317
18.2
APPROACHES
RELATED
TO
THE
DEFLECTION
AND
THE
STRESSES
.....................
319
18.3
ELEMENT
STIFFNESS
MATRIX
AND
LOAD
VECTOR
..........................................
321
18.4
FULFILLMENT
OF
THE
CONTINUITY
CONDITIONS
AT
THE
INTERFACE
..................
323
18.5
SUBSEQUENT
STRESS
ANALYSIS
...................................................................
324
18.6
TEST
.........................................................................................................
324
19
DISCRETE
KIRCHHOFF-THEORY
ELEMENT
327
19.1
THE
DISCRETE
KIRCHHOFF
TRIANGULAR
ELEMENT
.......................................
328
19.2
STIFFNESS
MATRIX,
LOAD
VECTOR
AND
STRESS
ANALYSIS
..............................
336
19.3
TEST
.........................................................................................................
337
20
BENCHMARK
CONCERNING
TRIANGULAR
PLATE
ELEMENTS
339
20.1
SQUARE
PLATE
SUBJECTED
TO
DISTRIBUTED
LOADING
.................................
339
20.2
TRAPEZOIDAL
PLATE
SUBJECTED
TO
DISTRIBUTED
LOADING
..........................
343
SHEAR-DEFORMATION
BEAM
AND
PLATE
ELEMENTS
347
21
TIMOSHENKO
BEAM
ELEMENTS
349
21.1
ELEMENTS
EMPLOYING
DISPLACEMENTS
AS
PRIMARY
VARIABLES
.................
350
21.2
MIXED
ELEMENTS
.....................................................................................
354
21.3
HYBRID-MIXED
ELEMENTS
.......................................................................
356
21.4
CONVERGENCE
BEHAVIOR
CONCERNING
THE
BEAM
ELEMENTS
....................
357
22
PLATE
ELEMENTS
INCLUDING
SHEAR
DEFORMATIONS
359
22.1
KIRCHHOFF
AND
REISSNER-MINDLIN
THEORIES
BY
COMPARISON
.................
359
22.2
GOVERNING
EQUATIONS
OF
THE
REISSNER-MINDLIN
THEORY
.......................
362
22.3
WEAK
FORMULATION
OF
THE
GOVERNING
EQUATIONS
.................................
363
22.4
QUADRILATERAL
ELEMENT
EMPLOYING
A
BI
-
I
INEAR
APPROACH
...................
365
22.5
HYBRID-DISPLACEMENT
QUADRILATERAL
ELEMENT
......................................
368
22.6 COMPARISON
OF
THE
ELEMENTS
................................................................
373
22.7
DISPLACEMENT-BASED
TRIANGULAR
ELEMENT
...........................................
380
22.8
MIXED
QUADRILATERAL
ELEMENT
...............................................................
387
22.9
HYBRID-MIXED
QUADRILATERAL
ELEMENT
..................................................
393
EVALUATION
OF
RESULTS
401
23
ERROR
ESTIMATION
403
23.1
THE
LEAST
SQUARES
METHOD
...................................................................
404
23.2
ERROR
ESTIMATION
BY
APPLYING
THE
PRINCIPLE
OF
VIRTUAL
WORK
............
407
23.3
MESH-ADAPTATION
...................................................................................
410
24
QUALITY
OF
ELEMENTS
413
24.1
THE
EIGENVALUE
ANALYSIS
......................................................................
413
24.2
THE
LOCKING
PHENOMENA
.....................................................................
417
24.3
IMPROVEMENT
OF
ELEMENTS
SUFFERING
FROM
LOCKING
..............................
421
24.4
THE
PATCH-TEST
...................................................................................
425
REFERENCES
427
INDEX
437
|
adam_txt |
FOUNDATIONS
1
1
INTRODUCTION
3
1.1
GOVERNING
EQUATIONSAND
APPROXIMATE
SOLUTION
.
7
1.2
GENERAL
ASPECTS
CONCERNING
THE
FINITE
ELEMENT
METHOD
.
8
1.3
A
COMPARISON
OF
EXACT
SOLUTION
AND
APPROXIMATE
SOLUTION
.
11
2
DISCRETIZATION
OF
THE
WORK
EQUATION
19
2.1
PRINCIPLE
OF
VIRTUAL
DISPLACEMENTS
.
19
2.2
PRINCIPLE
OF
VIRTUAL
FORCES
.
25
2.3
THE
GENERAL
PROCEDURE
TO
SET
UP
THE
ELEMENT
MATRICES
.
28
2.4
SHAPE
FUNCTIONS
AND
CONVERGENCE
CRITERIA
.
38
3
STRUCTURE
AND
SOLUTION
OF
THE
SYSTEM
OF
EQUATIONS
51
3.1
REAL
AND
VIRTUAL
NODAL
DISPLACEMENTS
.
52
3.2
EQUATIONS
OF
CONDITION
.
52
3.3
STRUCTURE
OF
THE
SYSTEM
OF
EQUATIONS
.
53
3.4
ASSEMBLY
OF
THE
STIFFNESS
MATRIX
OF
THE
ENTIRE
SYSTEM
.
55
3.5
THE
STORAGE
AND
SOLUTION
OF
THE
SYSTEM
OF
EQUATIONS
.
58
3.6
THE
OPTIMIZATION
OF
THE
BANDWIDTH
.
59
3.7
THE
FULFILLMENT
OF
DIRICHLET
BOUNDARY
CONDITIONS
.
61
4
HEAT
CONDUCTION
63
4.1
HEAT
CONDUCTION
AT
ONE-DIMENSIONAL
DESCRIPTION
.
63
4.2
HEAT
CONDUCTION
REGARDING
TWO
SPATIAL
DIMENSIONS
.
69
4.3
EXAMPLE
OF
USE
.
77
5
MEMBRANE
STRUCTURES
81
5.1
RECTANGULAR
ELEMENTS
REGARDING
PLANE
STRESS
SITUATION
.
81
5.2
RECTANGULAR
ELEMENT
COMPRISING
MODIFIED
SHEAR
STRAINS
.
96
5.3
PLANE
STRAIN
.
100
6
BENDING
STRUCTURES
101
6.1
ELEMENT
MATRICES
REGARDING
EULER-BERNOULLI
BEAMS
.
101
6.2
KIRCHHOFF
PLATE
ELEMENT
WITH
16
DOF
.
109
6.3
KIRCHHOFF
PLATE
ELEMENT
WITH
12
DOF
.
126
6.4
THE
12
DOF
ELEMENT
EMPLOYING
A
WEAK
CONFORMITY
.
129
TRIANGULAR
ELEMENTS
133
7
TRIANGULAR
ELEMENTS
-
DESCRIPTION
OF
GEOMETRY
135
7.1
LOCAL
8-N-COORD
INATE
SYSTEM
.
135
7.2
DESCRIPTION
EMPLOYING
AREA
COORDINATES
.
140
8
TRIANGULAR
ELEMENTS
TO
DESCRIBE
HEAT
CONDUCTION
145
8.1
A
LINEAR
APPROACH
RELATED
TO
THE
8-N-COORD
INATE
SYSTEM
.
145
8.2
EXAMPLE
OF
USE
.
149
9
TRIANGULAR
ELEMENTS
FOR
MEMBRANE
STRUCTURES
153
9.1
LINEAR
SHAPE
FUNCTIONS
WITH
RESPECT
TO
8-N-COORDI
NATES
.
153
9.2
DESCRIPTION
EMPLOYING
AREA
COORDINATES
X
A
,XB,X
C
.
158
9.3
QUADRATIC
APPROACH
EMPLOYING
8-N-COORDI
NATES
.
159
9.4
QUADRATIC
SHAPE
FUNCTIONS
USING
AREA
COORDINATES
.
166
9.5
A
COMPARISON
OF
STANDARD
ELEMENTS
.
170
10
TRIANGULAR
ELEMENTS
FOR
KIRCHHOFF
PLATES
173
10.1
CHOICE
OF
SHAPE
FUNCTIONS
AND
NODAL
UNKNOWNS
.
173
10.2
COMPLETE
APPROACH
OF
THE
5TH
ORDER
.
176
10.3
A
PLATE
ELEMENT
WITH
18
DOF
.
189
10.4
A
COMPARISON
OF
STANDARD
PLATE
ELEMENTS
.
193
ISOPARAMETRIC
ELEMENTS
197
11
NUMERICAL
INTEGRATION
199
11.1
NUMERICAL
INTEGRATION
USING
GAUSS-LEGENDRE
QUADRATURE
.
200
11.2
NUMERICAL
INTEGRATION
APPLIED
TO
MEMBRANE
ELEMENTS
.
204
11.3
TRIANGULAR
ELEMENTS
.
212
12
ISOPARAMETRIC
ELEMENTS
215
12.1
DESCRIPTION
OF
THE
ELEMENT
GEOMETRY
.
216
12.2
ISOPARAMETRIC
ELEMENTS
REGARDING
MEMBRANES
.
218
12.3
QUADRILATERAL
PLATE
ELEMENTS
.
223
HYBRID
QUADRILATERAL
ELEMENTS
229
13
HYBRID
FINITE
ELEMENTS
231
13.1
MIXED
FORMULATION
OF
GOVERNING
EQUATIONS
.
234
13.2
MIXED
FORMULATION
OF
WORK
EQUATIONS
.
236
13.3
HYBRID
DISCRETIZATION
OF
WORK
EQUATIONS
.
242
14
HYBRID-MIXED
PLANE
STRESS
ELEMENTS
249
14.1
MIXED
PRINCIPLE
OF
WORK
FOR
PLANE
STRESS
STRUCTURES
.
249
14.2
WORK
EQUATIONS
OF
A
HYBRID
PLANE
STRESS
ELEMENT
.
252
14.3
ELEMENT
STIFFNESS
MATRIX
.
256
14.4
SUBSEQUENT
STRESS
ANALYSIS
.
257
14.5
LINEAR
SHAPE
FUNCTIONS
.
258
14.6
QUADRATIC
SHAPE
FUNCTIONS
.
261
14.7
LINEAR
APPROACHES
WITH
COUPLING
OF
DEGREES
OF
FREEDOM
.
264
14.8
CONVERGENCE
BEHAVIOR
OF
THE
ELEMENTS
.
268
15
HYBRID-MIXED
EULER-BERNOULLI
BEAM
ELEMENTS
273
15.1
MIXED
FORMULATION
EMPLOYING
FORCESAND
DISPLACEMENTS
.
273
15.2
WORK
EQUATION
IN
HYBRID
FORMULATION
.
277
15.3
ELEMENT
STIFFNESS
MATRIX
.
279
16
HYBRID-MIXED
KIRCHHOFF
PLATE
ELEMENTS
283
16.1
MIXED
PRINCIPLES
OF
WORK
CONCERNING
KIRCHHOFF
PLATES
.
283
16.2
HYBRID-MIXED
RECTANGULAR
PLATE
ELEMENT
.
293
HYBRID
TRIANGULAR
PLATE
ELEMENTS
299
17
HYBRID
TRIANGULAR
PLATE
ELEMENTS
301
17.1
CUBIC
APPROACH
FOR
TRIANGULAR
PLATE
ELEMENTS
.
302
17.2
HYBRID-DISPLACEMENT
ELEMENTS
EMPLOYING
104-3
DOF
.
306
17.3
DISPLACEMENT-BASED
ELEMENT
WITH
WEAK
CONFORMITY
.
314
18
HYBRID-MIXED
TRIANGULAR
PLATE
ELEMENTS
317
18.1
WORK
EQUATIONS
.
317
18.2
APPROACHES
RELATED
TO
THE
DEFLECTION
AND
THE
STRESSES
.
319
18.3
ELEMENT
STIFFNESS
MATRIX
AND
LOAD
VECTOR
.
321
18.4
FULFILLMENT
OF
THE
CONTINUITY
CONDITIONS
AT
THE
INTERFACE
.
323
18.5
SUBSEQUENT
STRESS
ANALYSIS
.
324
18.6
TEST
.
324
19
DISCRETE
KIRCHHOFF-THEORY
ELEMENT
327
19.1
THE
DISCRETE
KIRCHHOFF
TRIANGULAR
ELEMENT
.
328
19.2
STIFFNESS
MATRIX,
LOAD
VECTOR
AND
STRESS
ANALYSIS
.
336
19.3
TEST
.
337
20
BENCHMARK
CONCERNING
TRIANGULAR
PLATE
ELEMENTS
339
20.1
SQUARE
PLATE
SUBJECTED
TO
DISTRIBUTED
LOADING
.
339
20.2
TRAPEZOIDAL
PLATE
SUBJECTED
TO
DISTRIBUTED
LOADING
.
343
SHEAR-DEFORMATION
BEAM
AND
PLATE
ELEMENTS
347
21
TIMOSHENKO
BEAM
ELEMENTS
349
21.1
ELEMENTS
EMPLOYING
DISPLACEMENTS
AS
PRIMARY
VARIABLES
.
350
21.2
MIXED
ELEMENTS
.
354
21.3
HYBRID-MIXED
ELEMENTS
.
356
21.4
CONVERGENCE
BEHAVIOR
CONCERNING
THE
BEAM
ELEMENTS
.
357
22
PLATE
ELEMENTS
INCLUDING
SHEAR
DEFORMATIONS
359
22.1
KIRCHHOFF
AND
REISSNER-MINDLIN
THEORIES
BY
COMPARISON
.
359
22.2
GOVERNING
EQUATIONS
OF
THE
REISSNER-MINDLIN
THEORY
.
362
22.3
WEAK
FORMULATION
OF
THE
GOVERNING
EQUATIONS
.
363
22.4
QUADRILATERAL
ELEMENT
EMPLOYING
A
BI
-
I
INEAR
APPROACH
.
365
22.5
HYBRID-DISPLACEMENT
QUADRILATERAL
ELEMENT
.
368
22.6 COMPARISON
OF
THE
ELEMENTS
.
373
22.7
DISPLACEMENT-BASED
TRIANGULAR
ELEMENT
.
380
22.8
MIXED
QUADRILATERAL
ELEMENT
.
387
22.9
HYBRID-MIXED
QUADRILATERAL
ELEMENT
.
393
EVALUATION
OF
RESULTS
401
23
ERROR
ESTIMATION
403
23.1
THE
LEAST
SQUARES
METHOD
.
404
23.2
ERROR
ESTIMATION
BY
APPLYING
THE
PRINCIPLE
OF
VIRTUAL
WORK
.
407
23.3
MESH-ADAPTATION
.
410
24
QUALITY
OF
ELEMENTS
413
24.1
THE
EIGENVALUE
ANALYSIS
.
413
24.2
THE
LOCKING
PHENOMENA
.
417
24.3
IMPROVEMENT
OF
ELEMENTS
SUFFERING
FROM
LOCKING
.
421
24.4
THE
PATCH-TEST
.
425
REFERENCES
427
INDEX
437 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Dinkler, Dieter Kowalsky, Ursula |
author_GND | (DE-588)1021753343 (DE-588)1251872514 |
author_facet | Dinkler, Dieter Kowalsky, Ursula |
author_role | aut aut |
author_sort | Dinkler, Dieter |
author_variant | d d dd u k uk |
building | Verbundindex |
bvnumber | BV049396631 |
classification_rvk | SK 910 |
ctrlnum | (OCoLC)1409130167 (DE-599)DNB1297845773 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02372nam a22005658c 4500</leader><controlfield tag="001">BV049396631</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">231106s2024 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,N32</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1297845773</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783658427412</subfield><subfield code="c">: EUR 80.24 (DE) (freier Preis), EUR 82.49 (AT) (freier Preis), CHF 88.50 (freier Preis), EUR 74.99</subfield><subfield code="9">978-3-658-42741-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3658427418</subfield><subfield code="9">3-658-42741-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783658427412</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 978-3-658-42741-2</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 89085270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1409130167</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1297845773</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-HE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">624</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dinkler, Dieter</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1021753343</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Finite Element Methods</subfield><subfield code="c">Dieter Dinkler, Ursula Kowalsky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Springer Vieweg</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 443 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">21 cm x 14.8 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">FEM</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Heat Conduction</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Menbrane Structures</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bending Structures</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kirchoff's Plates</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Isoparametric Elements</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Error Estimation</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kowalsky, Ursula</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1251872514</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Springer Fachmedien Wiesbaden</subfield><subfield code="0">(DE-588)1043386068</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-658-42742-9</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=8230c1f9200149fbb1eef049776e29f9&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">https://link.springer.com/978-3-658-42741-2</subfield><subfield code="3">Auszug</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034723930&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034723930</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20230801</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
id | DE-604.BV049396631 |
illustrated | Illustrated |
index_date | 2024-07-03T23:02:42Z |
indexdate | 2024-07-10T10:05:55Z |
institution | BVB |
institution_GND | (DE-588)1043386068 |
isbn | 9783658427412 3658427418 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034723930 |
oclc_num | 1409130167 |
open_access_boolean | |
owner | DE-1050 |
owner_facet | DE-1050 |
physical | XIV, 443 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Springer Vieweg |
record_format | marc |
spelling | Dinkler, Dieter Verfasser (DE-588)1021753343 aut Introduction to Finite Element Methods Dieter Dinkler, Ursula Kowalsky Wiesbaden Springer Vieweg [2024] XIV, 443 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm txt rdacontent n rdamedia nc rdacarrier Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf FEM Heat Conduction Menbrane Structures Bending Structures Kirchoff's Plates Isoparametric Elements Error Estimation Finite-Elemente-Methode (DE-588)4017233-8 s DE-604 Kowalsky, Ursula Verfasser (DE-588)1251872514 aut Springer Fachmedien Wiesbaden (DE-588)1043386068 pbl Erscheint auch als Online-Ausgabe 978-3-658-42742-9 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=8230c1f9200149fbb1eef049776e29f9&prov=M&dok_var=1&dok_ext=htm Inhaltstext X:MVB https://link.springer.com/978-3-658-42741-2 Auszug DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034723930&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20230801 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Dinkler, Dieter Kowalsky, Ursula Introduction to Finite Element Methods Finite-Elemente-Methode (DE-588)4017233-8 gnd |
subject_GND | (DE-588)4017233-8 |
title | Introduction to Finite Element Methods |
title_auth | Introduction to Finite Element Methods |
title_exact_search | Introduction to Finite Element Methods |
title_exact_search_txtP | Introduction to Finite Element Methods |
title_full | Introduction to Finite Element Methods Dieter Dinkler, Ursula Kowalsky |
title_fullStr | Introduction to Finite Element Methods Dieter Dinkler, Ursula Kowalsky |
title_full_unstemmed | Introduction to Finite Element Methods Dieter Dinkler, Ursula Kowalsky |
title_short | Introduction to Finite Element Methods |
title_sort | introduction to finite element methods |
topic | Finite-Elemente-Methode (DE-588)4017233-8 gnd |
topic_facet | Finite-Elemente-Methode |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=8230c1f9200149fbb1eef049776e29f9&prov=M&dok_var=1&dok_ext=htm https://link.springer.com/978-3-658-42741-2 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034723930&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT dinklerdieter introductiontofiniteelementmethods AT kowalskyursula introductiontofiniteelementmethods AT springerfachmedienwiesbaden introductiontofiniteelementmethods |