Elementary modular Iwasawa theory:
"This book is the first to provide a comprehensive and elementary account of the new Iwasawa theory innovated via the deformation theory of modular forms and Galois representations. The deformation theory of modular forms is developed by generalizing the cohomological approach discovered in the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore
World Scientific
2022
|
Schriftenreihe: | Series on number theory and its applications
Vol. 16 |
Schlagworte: | |
Zusammenfassung: | "This book is the first to provide a comprehensive and elementary account of the new Iwasawa theory innovated via the deformation theory of modular forms and Galois representations. The deformation theory of modular forms is developed by generalizing the cohomological approach discovered in the author's 2019 AMS Leroy P Steele Prize-winning article without using much algebraic geometry. Starting with a description of Iwasawa's classical results on his proof of the main conjecture under the Kummer-Vandiver conjecture (which proves cyclicity of his Iwasawa module more than just proving his main conjecture), we describe a generalization of the method proving cyclicity to the adjoint Selmer group of every ordinary deformation of a two-dimensional Artin Galois representation. The fundamentals in the first five chapters are as follows: Iwasawa's proof; a modular version of Iwasawa's discovery by Kubert-Lang as an introduction to modular forms; a level-headed description of the p-adic interpolation of modular forms and p-adic L-functions, which are developed into a modular deformation theory; Galois deformation theory of the abelian case. The continuing chapters provide the level of exposition accessible to graduate students, while the results are the latest"-- |
Beschreibung: | xviii, 427 Seiten |
ISBN: | 9789811241369 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV049388517 | ||
003 | DE-604 | ||
005 | 20240115 | ||
007 | t | ||
008 | 231030s2022 |||| 00||| eng d | ||
020 | |a 9789811241369 |c hbk. |9 978-981-1241-36-9 | ||
035 | |a (OCoLC)1283734024 | ||
035 | |a (DE-599)BVBBV049388517 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 512.7/4 | |
100 | 1 | |a Hida, Haruzo |d 1952- |e Verfasser |0 (DE-588)129238260 |4 aut | |
245 | 1 | 0 | |a Elementary modular Iwasawa theory |c Haruzo Hida |
264 | 1 | |a New Jersey ; London ; Singapore |b World Scientific |c 2022 | |
300 | |a xviii, 427 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Series on number theory and its applications |v Vol. 16 | |
520 | |a "This book is the first to provide a comprehensive and elementary account of the new Iwasawa theory innovated via the deformation theory of modular forms and Galois representations. The deformation theory of modular forms is developed by generalizing the cohomological approach discovered in the author's 2019 AMS Leroy P Steele Prize-winning article without using much algebraic geometry. Starting with a description of Iwasawa's classical results on his proof of the main conjecture under the Kummer-Vandiver conjecture (which proves cyclicity of his Iwasawa module more than just proving his main conjecture), we describe a generalization of the method proving cyclicity to the adjoint Selmer group of every ordinary deformation of a two-dimensional Artin Galois representation. The fundamentals in the first five chapters are as follows: Iwasawa's proof; a modular version of Iwasawa's discovery by Kubert-Lang as an introduction to modular forms; a level-headed description of the p-adic interpolation of modular forms and p-adic L-functions, which are developed into a modular deformation theory; Galois deformation theory of the abelian case. The continuing chapters provide the level of exposition accessible to graduate students, while the results are the latest"-- | ||
650 | 4 | |a Iwasawa theory | |
650 | 4 | |a Galois theory | |
650 | 4 | |a Modules (Algebra) | |
650 | 0 | 7 | |a Galois-Theorie |0 (DE-588)4155901-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Iwasawa-Theorie |0 (DE-588)4384573-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Galois-Theorie |0 (DE-588)4155901-0 |D s |
689 | 0 | 1 | |a Iwasawa-Theorie |0 (DE-588)4384573-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-1241-37-6 |
830 | 0 | |a Series on number theory and its applications |v Vol. 16 |w (DE-604)BV022244386 |9 16 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034715996 |
Datensatz im Suchindex
_version_ | 1804186095958622208 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Hida, Haruzo 1952- |
author_GND | (DE-588)129238260 |
author_facet | Hida, Haruzo 1952- |
author_role | aut |
author_sort | Hida, Haruzo 1952- |
author_variant | h h hh |
building | Verbundindex |
bvnumber | BV049388517 |
ctrlnum | (OCoLC)1283734024 (DE-599)BVBBV049388517 |
dewey-full | 512.7/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/4 |
dewey-search | 512.7/4 |
dewey-sort | 3512.7 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02659nam a2200409zcb4500</leader><controlfield tag="001">BV049388517</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240115 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">231030s2022 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811241369</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-981-1241-36-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1283734024</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049388517</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/4</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hida, Haruzo</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)129238260</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elementary modular Iwasawa theory</subfield><subfield code="c">Haruzo Hida</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 427 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on number theory and its applications</subfield><subfield code="v">Vol. 16</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book is the first to provide a comprehensive and elementary account of the new Iwasawa theory innovated via the deformation theory of modular forms and Galois representations. The deformation theory of modular forms is developed by generalizing the cohomological approach discovered in the author's 2019 AMS Leroy P Steele Prize-winning article without using much algebraic geometry. Starting with a description of Iwasawa's classical results on his proof of the main conjecture under the Kummer-Vandiver conjecture (which proves cyclicity of his Iwasawa module more than just proving his main conjecture), we describe a generalization of the method proving cyclicity to the adjoint Selmer group of every ordinary deformation of a two-dimensional Artin Galois representation. The fundamentals in the first five chapters are as follows: Iwasawa's proof; a modular version of Iwasawa's discovery by Kubert-Lang as an introduction to modular forms; a level-headed description of the p-adic interpolation of modular forms and p-adic L-functions, which are developed into a modular deformation theory; Galois deformation theory of the abelian case. The continuing chapters provide the level of exposition accessible to graduate students, while the results are the latest"--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iwasawa theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galois theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modules (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Galois-Theorie</subfield><subfield code="0">(DE-588)4155901-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iwasawa-Theorie</subfield><subfield code="0">(DE-588)4384573-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Galois-Theorie</subfield><subfield code="0">(DE-588)4155901-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Iwasawa-Theorie</subfield><subfield code="0">(DE-588)4384573-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-1241-37-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on number theory and its applications</subfield><subfield code="v">Vol. 16</subfield><subfield code="w">(DE-604)BV022244386</subfield><subfield code="9">16</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034715996</subfield></datafield></record></collection> |
id | DE-604.BV049388517 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:00:39Z |
indexdate | 2024-07-10T10:05:41Z |
institution | BVB |
isbn | 9789811241369 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034715996 |
oclc_num | 1283734024 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | xviii, 427 Seiten |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | World Scientific |
record_format | marc |
series | Series on number theory and its applications |
series2 | Series on number theory and its applications |
spelling | Hida, Haruzo 1952- Verfasser (DE-588)129238260 aut Elementary modular Iwasawa theory Haruzo Hida New Jersey ; London ; Singapore World Scientific 2022 xviii, 427 Seiten txt rdacontent n rdamedia nc rdacarrier Series on number theory and its applications Vol. 16 "This book is the first to provide a comprehensive and elementary account of the new Iwasawa theory innovated via the deformation theory of modular forms and Galois representations. The deformation theory of modular forms is developed by generalizing the cohomological approach discovered in the author's 2019 AMS Leroy P Steele Prize-winning article without using much algebraic geometry. Starting with a description of Iwasawa's classical results on his proof of the main conjecture under the Kummer-Vandiver conjecture (which proves cyclicity of his Iwasawa module more than just proving his main conjecture), we describe a generalization of the method proving cyclicity to the adjoint Selmer group of every ordinary deformation of a two-dimensional Artin Galois representation. The fundamentals in the first five chapters are as follows: Iwasawa's proof; a modular version of Iwasawa's discovery by Kubert-Lang as an introduction to modular forms; a level-headed description of the p-adic interpolation of modular forms and p-adic L-functions, which are developed into a modular deformation theory; Galois deformation theory of the abelian case. The continuing chapters provide the level of exposition accessible to graduate students, while the results are the latest"-- Iwasawa theory Galois theory Modules (Algebra) Galois-Theorie (DE-588)4155901-0 gnd rswk-swf Iwasawa-Theorie (DE-588)4384573-3 gnd rswk-swf Galois-Theorie (DE-588)4155901-0 s Iwasawa-Theorie (DE-588)4384573-3 s DE-604 Erscheint auch als Online-Ausgabe 978-981-1241-37-6 Series on number theory and its applications Vol. 16 (DE-604)BV022244386 16 |
spellingShingle | Hida, Haruzo 1952- Elementary modular Iwasawa theory Series on number theory and its applications Iwasawa theory Galois theory Modules (Algebra) Galois-Theorie (DE-588)4155901-0 gnd Iwasawa-Theorie (DE-588)4384573-3 gnd |
subject_GND | (DE-588)4155901-0 (DE-588)4384573-3 |
title | Elementary modular Iwasawa theory |
title_auth | Elementary modular Iwasawa theory |
title_exact_search | Elementary modular Iwasawa theory |
title_exact_search_txtP | Elementary modular Iwasawa theory |
title_full | Elementary modular Iwasawa theory Haruzo Hida |
title_fullStr | Elementary modular Iwasawa theory Haruzo Hida |
title_full_unstemmed | Elementary modular Iwasawa theory Haruzo Hida |
title_short | Elementary modular Iwasawa theory |
title_sort | elementary modular iwasawa theory |
topic | Iwasawa theory Galois theory Modules (Algebra) Galois-Theorie (DE-588)4155901-0 gnd Iwasawa-Theorie (DE-588)4384573-3 gnd |
topic_facet | Iwasawa theory Galois theory Modules (Algebra) Galois-Theorie Iwasawa-Theorie |
volume_link | (DE-604)BV022244386 |
work_keys_str_mv | AT hidaharuzo elementarymodulariwasawatheory |