Perspectives in scalar curvature:
"Volume I contains a long article by Misha Gromov based on his many years of involvement in this subject. It came from lectures delivered in Spring 2019 at IHES. There is some background given. Many topics in the field are presented, and many open problems are discussed. One intriguing point he...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2023]
|
Schlagworte: | |
Zusammenfassung: | "Volume I contains a long article by Misha Gromov based on his many years of involvement in this subject. It came from lectures delivered in Spring 2019 at IHES. There is some background given. Many topics in the field are presented, and many open problems are discussed. One intriguing point here is the crucial role played by two seemingly unrelated analytic means: index theory of Dirac operators and geometric measure theory. Very recently there have been some real breakthroughs in the field. Volume I has several survey articles written by people who were responsible for these results. For Volume II, many people in areas of mathematics and physics, whose work is somehow related to scalar curvature, were asked to write about this in any way thay pleased. This gives rise to a wonderful collection of articles, some with very broad and historical views, others which discussed specific fascinating subjects. These two books give a rich and powerful view of one of geometry's very appealing sides"-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 2 Bände |
ISBN: | 9789811249358 |
Internformat
MARC
LEADER | 00000nam a2200000 ca4500 | ||
---|---|---|---|
001 | BV049384208 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 231026m2023uuuu |||| 00||| eng d | ||
020 | |a 9789811249358 |c set ; hardcover |9 978-981-12-4935-8 | ||
035 | |a (DE-599)BVBBV049384208 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 516.3/62 |2 23 | |
084 | |a 31.52 |2 bkl | ||
084 | |a 31.65 |2 bkl | ||
245 | 1 | 0 | |a Perspectives in scalar curvature |c edited by Mikhail L. Gromov (Institut des Hautes Études Scientifiques, France), H. Blaine Lawson, Jr. (Stony Brook University, USA) |
246 | 1 | 3 | |a six nine 6 9 |
246 | 1 | 0 | |a six nine 6 9 |
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2023] | |
300 | |a 2 Bände | ||
336 | |b txt |2 rdacontent | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a "Volume I contains a long article by Misha Gromov based on his many years of involvement in this subject. It came from lectures delivered in Spring 2019 at IHES. There is some background given. Many topics in the field are presented, and many open problems are discussed. One intriguing point here is the crucial role played by two seemingly unrelated analytic means: index theory of Dirac operators and geometric measure theory. Very recently there have been some real breakthroughs in the field. Volume I has several survey articles written by people who were responsible for these results. For Volume II, many people in areas of mathematics and physics, whose work is somehow related to scalar curvature, were asked to write about this in any way thay pleased. This gives rise to a wonderful collection of articles, some with very broad and historical views, others which discussed specific fascinating subjects. These two books give a rich and powerful view of one of geometry's very appealing sides"-- | |
650 | 0 | 7 | |a Minimalfläche |0 (DE-588)4127814-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Maßtheorie |0 (DE-588)4125258-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Positive Krümmung |0 (DE-588)4361500-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Indextheorie |0 (DE-588)4161489-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Skalare Krümmung |0 (DE-588)4808160-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vollständige Mannigfaltigkeit |0 (DE-588)4287202-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dirac-Operator |0 (DE-588)4150118-4 |2 gnd |9 rswk-swf |
653 | 0 | |a Curvature | |
653 | 0 | |a Manifolds (Mathematics) | |
689 | 0 | 0 | |a Skalare Krümmung |0 (DE-588)4808160-7 |D s |
689 | 0 | 1 | |a Positive Krümmung |0 (DE-588)4361500-4 |D s |
689 | 0 | 2 | |a Dirac-Operator |0 (DE-588)4150118-4 |D s |
689 | 0 | 3 | |a Indextheorie |0 (DE-588)4161489-6 |D s |
689 | 0 | 4 | |a Geometrische Maßtheorie |0 (DE-588)4125258-5 |D s |
689 | 0 | 5 | |a Vollständige Mannigfaltigkeit |0 (DE-588)4287202-9 |D s |
689 | 0 | 6 | |a Minimalfläche |0 (DE-588)4127814-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Gromov, Mikhail |d 1943- |0 (DE-588)119289830 |4 edt | |
700 | 1 | |a Lawson, H. Blaine |d 1942- |0 (DE-588)122158814 |4 edt | |
776 | 0 | |z 9789811249365 |c set ; ebook for institutions | |
776 | 0 | |z 9789811249372 |c set ; ebook for individuals | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034711767 |
Datensatz im Suchindex
_version_ | 1804186088523169792 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Gromov, Mikhail 1943- Lawson, H. Blaine 1942- |
author2_role | edt edt |
author2_variant | m g mg h b l hb hbl |
author_GND | (DE-588)119289830 (DE-588)122158814 |
author_facet | Gromov, Mikhail 1943- Lawson, H. Blaine 1942- |
building | Verbundindex |
bvnumber | BV049384208 |
ctrlnum | (DE-599)BVBBV049384208 |
dewey-full | 516.3/62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/62 |
dewey-search | 516.3/62 |
dewey-sort | 3516.3 262 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03350nam a2200589 ca4500</leader><controlfield tag="001">BV049384208</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">231026m2023uuuu |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811249358</subfield><subfield code="c">set ; hardcover</subfield><subfield code="9">978-981-12-4935-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049384208</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/62</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perspectives in scalar curvature</subfield><subfield code="c">edited by Mikhail L. Gromov (Institut des Hautes Études Scientifiques, France), H. Blaine Lawson, Jr. (Stony Brook University, USA)</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">six nine 6 9</subfield></datafield><datafield tag="246" ind1="1" ind2="0"><subfield code="a">six nine 6 9</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">2 Bände</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Volume I contains a long article by Misha Gromov based on his many years of involvement in this subject. It came from lectures delivered in Spring 2019 at IHES. There is some background given. Many topics in the field are presented, and many open problems are discussed. One intriguing point here is the crucial role played by two seemingly unrelated analytic means: index theory of Dirac operators and geometric measure theory. Very recently there have been some real breakthroughs in the field. Volume I has several survey articles written by people who were responsible for these results. For Volume II, many people in areas of mathematics and physics, whose work is somehow related to scalar curvature, were asked to write about this in any way thay pleased. This gives rise to a wonderful collection of articles, some with very broad and historical views, others which discussed specific fascinating subjects. These two books give a rich and powerful view of one of geometry's very appealing sides"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimalfläche</subfield><subfield code="0">(DE-588)4127814-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Maßtheorie</subfield><subfield code="0">(DE-588)4125258-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Positive Krümmung</subfield><subfield code="0">(DE-588)4361500-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Indextheorie</subfield><subfield code="0">(DE-588)4161489-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Skalare Krümmung</subfield><subfield code="0">(DE-588)4808160-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vollständige Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4287202-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dirac-Operator</subfield><subfield code="0">(DE-588)4150118-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Curvature</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Skalare Krümmung</subfield><subfield code="0">(DE-588)4808160-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Positive Krümmung</subfield><subfield code="0">(DE-588)4361500-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dirac-Operator</subfield><subfield code="0">(DE-588)4150118-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Indextheorie</subfield><subfield code="0">(DE-588)4161489-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Geometrische Maßtheorie</subfield><subfield code="0">(DE-588)4125258-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Vollständige Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4287202-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Minimalfläche</subfield><subfield code="0">(DE-588)4127814-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gromov, Mikhail</subfield><subfield code="d">1943-</subfield><subfield code="0">(DE-588)119289830</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lawson, H. Blaine</subfield><subfield code="d">1942-</subfield><subfield code="0">(DE-588)122158814</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9789811249365</subfield><subfield code="c">set ; ebook for institutions</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9789811249372</subfield><subfield code="c">set ; ebook for individuals</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034711767</subfield></datafield></record></collection> |
id | DE-604.BV049384208 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:59:46Z |
indexdate | 2024-07-10T10:05:34Z |
institution | BVB |
isbn | 9789811249358 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034711767 |
open_access_boolean | |
physical | 2 Bände |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | World Scientific |
record_format | marc |
spelling | Perspectives in scalar curvature edited by Mikhail L. Gromov (Institut des Hautes Études Scientifiques, France), H. Blaine Lawson, Jr. (Stony Brook University, USA) six nine 6 9 New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2023] 2 Bände txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index "Volume I contains a long article by Misha Gromov based on his many years of involvement in this subject. It came from lectures delivered in Spring 2019 at IHES. There is some background given. Many topics in the field are presented, and many open problems are discussed. One intriguing point here is the crucial role played by two seemingly unrelated analytic means: index theory of Dirac operators and geometric measure theory. Very recently there have been some real breakthroughs in the field. Volume I has several survey articles written by people who were responsible for these results. For Volume II, many people in areas of mathematics and physics, whose work is somehow related to scalar curvature, were asked to write about this in any way thay pleased. This gives rise to a wonderful collection of articles, some with very broad and historical views, others which discussed specific fascinating subjects. These two books give a rich and powerful view of one of geometry's very appealing sides"-- Minimalfläche (DE-588)4127814-8 gnd rswk-swf Geometrische Maßtheorie (DE-588)4125258-5 gnd rswk-swf Positive Krümmung (DE-588)4361500-4 gnd rswk-swf Indextheorie (DE-588)4161489-6 gnd rswk-swf Skalare Krümmung (DE-588)4808160-7 gnd rswk-swf Vollständige Mannigfaltigkeit (DE-588)4287202-9 gnd rswk-swf Dirac-Operator (DE-588)4150118-4 gnd rswk-swf Curvature Manifolds (Mathematics) Skalare Krümmung (DE-588)4808160-7 s Positive Krümmung (DE-588)4361500-4 s Dirac-Operator (DE-588)4150118-4 s Indextheorie (DE-588)4161489-6 s Geometrische Maßtheorie (DE-588)4125258-5 s Vollständige Mannigfaltigkeit (DE-588)4287202-9 s Minimalfläche (DE-588)4127814-8 s DE-604 Gromov, Mikhail 1943- (DE-588)119289830 edt Lawson, H. Blaine 1942- (DE-588)122158814 edt 9789811249365 set ; ebook for institutions 9789811249372 set ; ebook for individuals |
spellingShingle | Perspectives in scalar curvature Minimalfläche (DE-588)4127814-8 gnd Geometrische Maßtheorie (DE-588)4125258-5 gnd Positive Krümmung (DE-588)4361500-4 gnd Indextheorie (DE-588)4161489-6 gnd Skalare Krümmung (DE-588)4808160-7 gnd Vollständige Mannigfaltigkeit (DE-588)4287202-9 gnd Dirac-Operator (DE-588)4150118-4 gnd |
subject_GND | (DE-588)4127814-8 (DE-588)4125258-5 (DE-588)4361500-4 (DE-588)4161489-6 (DE-588)4808160-7 (DE-588)4287202-9 (DE-588)4150118-4 |
title | Perspectives in scalar curvature |
title_alt | six nine 6 9 |
title_auth | Perspectives in scalar curvature |
title_exact_search | Perspectives in scalar curvature |
title_exact_search_txtP | Perspectives in scalar curvature |
title_full | Perspectives in scalar curvature edited by Mikhail L. Gromov (Institut des Hautes Études Scientifiques, France), H. Blaine Lawson, Jr. (Stony Brook University, USA) |
title_fullStr | Perspectives in scalar curvature edited by Mikhail L. Gromov (Institut des Hautes Études Scientifiques, France), H. Blaine Lawson, Jr. (Stony Brook University, USA) |
title_full_unstemmed | Perspectives in scalar curvature edited by Mikhail L. Gromov (Institut des Hautes Études Scientifiques, France), H. Blaine Lawson, Jr. (Stony Brook University, USA) |
title_short | Perspectives in scalar curvature |
title_sort | perspectives in scalar curvature |
topic | Minimalfläche (DE-588)4127814-8 gnd Geometrische Maßtheorie (DE-588)4125258-5 gnd Positive Krümmung (DE-588)4361500-4 gnd Indextheorie (DE-588)4161489-6 gnd Skalare Krümmung (DE-588)4808160-7 gnd Vollständige Mannigfaltigkeit (DE-588)4287202-9 gnd Dirac-Operator (DE-588)4150118-4 gnd |
topic_facet | Minimalfläche Geometrische Maßtheorie Positive Krümmung Indextheorie Skalare Krümmung Vollständige Mannigfaltigkeit Dirac-Operator |
work_keys_str_mv | AT gromovmikhail perspectivesinscalarcurvature AT lawsonhblaine perspectivesinscalarcurvature AT gromovmikhail sixnine69 AT lawsonhblaine sixnine69 |