Green's function integral equation methods in nano-optics:
This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press, Taylor & Francis Group
2023
|
Ausgabe: | First issued in paperback |
Schlagworte: | |
Zusammenfassung: | This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function. This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions.Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. |
Beschreibung: | Introduction. Theoretical Foundation. One-dimensional Scattering Problems. Surface Integral Equation Method for 2D Scattering Problems. Area Integral Equation Method for 2D Scattering Problems. Volume Integral Equation Method for 3D Scattering Problems. Volume Integral Equation Method for Cylindrically Symmetric Structures. Surface Integral Equation Method for 3D scattering Problems. Chapter A: Residue Theorem. Chapter B: Conjugate Gradient Algorithm. Chapter C: Generalized Minimum Residual Algorithm. Chapter D: Bessel Functions. Chapter E: Analytic Scattering from a Cylinder and a Sphere. Chapter F: Calculating Guided Modes of Planar Waveguides. References. |
Beschreibung: | xii, 417 Seiten Illustrationen, Diagramme 793 gr. |
ISBN: | 9781032653129 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049383341 | ||
003 | DE-604 | ||
005 | 20231130 | ||
007 | t| | ||
008 | 231025s2023 xx a||| |||| 00||| eng d | ||
020 | |a 9781032653129 |c pbk |9 978-1-032-65312-9 | ||
024 | 3 | |a 9781032653129 | |
035 | |a (OCoLC)1414561552 | ||
035 | |a (DE-599)BVBBV049383341 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-11 | ||
100 | 1 | |a Søndergaard, Thomas M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Green's function integral equation methods in nano-optics |c Thomas M. Søndergaard, Aalborg University, Aalborg, Denmark |
250 | |a First issued in paperback | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press, Taylor & Francis Group |c 2023 | |
264 | 4 | |c ©2019 | |
300 | |a xii, 417 Seiten |b Illustrationen, Diagramme |c 793 gr. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Introduction. Theoretical Foundation. One-dimensional Scattering Problems. Surface Integral Equation Method for 2D Scattering Problems. Area Integral Equation Method for 2D Scattering Problems. Volume Integral Equation Method for 3D Scattering Problems. Volume Integral Equation Method for Cylindrically Symmetric Structures. Surface Integral Equation Method for 3D scattering Problems. Chapter A: Residue Theorem. Chapter B: Conjugate Gradient Algorithm. Chapter C: Generalized Minimum Residual Algorithm. Chapter D: Bessel Functions. Chapter E: Analytic Scattering from a Cylinder and a Sphere. Chapter F: Calculating Guided Modes of Planar Waveguides. References. | ||
520 | |a This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function. | ||
520 | |a This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. | ||
520 | |a Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions.Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. | ||
650 | 4 | |a bicssc / Electrical engineering | |
650 | 4 | |a bicssc / Nanotechnology | |
650 | 4 | |a bicssc / Optical physics | |
650 | 4 | |a bisacsh / TECHNOLOGY & ENGINEERING / Nanotechnology & MEMS | |
650 | 4 | |a bisacsh / TECHNOLOGY & ENGINEERING / Electrical | |
650 | 0 | 7 | |a Nanooptik |0 (DE-588)1024960048 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Green-Funktion |0 (DE-588)4158123-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Streutheorie |0 (DE-588)4183697-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Green-Funktion |0 (DE-588)4158123-4 |D s |
689 | 0 | 1 | |a Streutheorie |0 (DE-588)4183697-2 |D s |
689 | 0 | 2 | |a Nanooptik |0 (DE-588)1024960048 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-8153-6596-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-351-26020-6 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034710919 |
Datensatz im Suchindex
_version_ | 1819221073622728704 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Søndergaard, Thomas M. |
author_facet | Søndergaard, Thomas M. |
author_role | aut |
author_sort | Søndergaard, Thomas M. |
author_variant | t m s tm tms |
building | Verbundindex |
bvnumber | BV049383341 |
ctrlnum | (OCoLC)1414561552 (DE-599)BVBBV049383341 |
edition | First issued in paperback |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049383341</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231130</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">231025s2023 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781032653129</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-032-65312-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781032653129</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1414561552</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049383341</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Søndergaard, Thomas M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Green's function integral equation methods in nano-optics</subfield><subfield code="c">Thomas M. Søndergaard, Aalborg University, Aalborg, Denmark</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First issued in paperback</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 417 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">793 gr.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction. Theoretical Foundation. One-dimensional Scattering Problems. Surface Integral Equation Method for 2D Scattering Problems. Area Integral Equation Method for 2D Scattering Problems. Volume Integral Equation Method for 3D Scattering Problems. Volume Integral Equation Method for Cylindrically Symmetric Structures. Surface Integral Equation Method for 3D scattering Problems. Chapter A: Residue Theorem. Chapter B: Conjugate Gradient Algorithm. Chapter C: Generalized Minimum Residual Algorithm. Chapter D: Bessel Functions. Chapter E: Analytic Scattering from a Cylinder and a Sphere. Chapter F: Calculating Guided Modes of Planar Waveguides. References.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions.Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc / Electrical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc / Nanotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc / Optical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh / TECHNOLOGY & ENGINEERING / Nanotechnology & MEMS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh / TECHNOLOGY & ENGINEERING / Electrical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanooptik</subfield><subfield code="0">(DE-588)1024960048</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Green-Funktion</subfield><subfield code="0">(DE-588)4158123-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Streutheorie</subfield><subfield code="0">(DE-588)4183697-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Green-Funktion</subfield><subfield code="0">(DE-588)4158123-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Streutheorie</subfield><subfield code="0">(DE-588)4183697-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nanooptik</subfield><subfield code="0">(DE-588)1024960048</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-8153-6596-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-351-26020-6</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034710919</subfield></datafield></record></collection> |
id | DE-604.BV049383341 |
illustrated | Illustrated |
index_date | 2024-07-03T22:59:34Z |
indexdate | 2024-12-23T09:00:13Z |
institution | BVB |
isbn | 9781032653129 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034710919 |
oclc_num | 1414561552 |
open_access_boolean | |
owner | DE-29T DE-11 |
owner_facet | DE-29T DE-11 |
physical | xii, 417 Seiten Illustrationen, Diagramme 793 gr. |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
spelling | Søndergaard, Thomas M. Verfasser aut Green's function integral equation methods in nano-optics Thomas M. Søndergaard, Aalborg University, Aalborg, Denmark First issued in paperback Boca Raton ; London ; New York CRC Press, Taylor & Francis Group 2023 ©2019 xii, 417 Seiten Illustrationen, Diagramme 793 gr. txt rdacontent n rdamedia nc rdacarrier Introduction. Theoretical Foundation. One-dimensional Scattering Problems. Surface Integral Equation Method for 2D Scattering Problems. Area Integral Equation Method for 2D Scattering Problems. Volume Integral Equation Method for 3D Scattering Problems. Volume Integral Equation Method for Cylindrically Symmetric Structures. Surface Integral Equation Method for 3D scattering Problems. Chapter A: Residue Theorem. Chapter B: Conjugate Gradient Algorithm. Chapter C: Generalized Minimum Residual Algorithm. Chapter D: Bessel Functions. Chapter E: Analytic Scattering from a Cylinder and a Sphere. Chapter F: Calculating Guided Modes of Planar Waveguides. References. This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function. This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions.Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. bicssc / Electrical engineering bicssc / Nanotechnology bicssc / Optical physics bisacsh / TECHNOLOGY & ENGINEERING / Nanotechnology & MEMS bisacsh / TECHNOLOGY & ENGINEERING / Electrical Nanooptik (DE-588)1024960048 gnd rswk-swf Green-Funktion (DE-588)4158123-4 gnd rswk-swf Streutheorie (DE-588)4183697-2 gnd rswk-swf Green-Funktion (DE-588)4158123-4 s Streutheorie (DE-588)4183697-2 s Nanooptik (DE-588)1024960048 s DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 978-0-8153-6596-9 Erscheint auch als Online-Ausgabe 978-1-351-26020-6 |
spellingShingle | Søndergaard, Thomas M. Green's function integral equation methods in nano-optics bicssc / Electrical engineering bicssc / Nanotechnology bicssc / Optical physics bisacsh / TECHNOLOGY & ENGINEERING / Nanotechnology & MEMS bisacsh / TECHNOLOGY & ENGINEERING / Electrical Nanooptik (DE-588)1024960048 gnd Green-Funktion (DE-588)4158123-4 gnd Streutheorie (DE-588)4183697-2 gnd |
subject_GND | (DE-588)1024960048 (DE-588)4158123-4 (DE-588)4183697-2 |
title | Green's function integral equation methods in nano-optics |
title_auth | Green's function integral equation methods in nano-optics |
title_exact_search | Green's function integral equation methods in nano-optics |
title_exact_search_txtP | Green's function integral equation methods in nano-optics |
title_full | Green's function integral equation methods in nano-optics Thomas M. Søndergaard, Aalborg University, Aalborg, Denmark |
title_fullStr | Green's function integral equation methods in nano-optics Thomas M. Søndergaard, Aalborg University, Aalborg, Denmark |
title_full_unstemmed | Green's function integral equation methods in nano-optics Thomas M. Søndergaard, Aalborg University, Aalborg, Denmark |
title_short | Green's function integral equation methods in nano-optics |
title_sort | green s function integral equation methods in nano optics |
topic | bicssc / Electrical engineering bicssc / Nanotechnology bicssc / Optical physics bisacsh / TECHNOLOGY & ENGINEERING / Nanotechnology & MEMS bisacsh / TECHNOLOGY & ENGINEERING / Electrical Nanooptik (DE-588)1024960048 gnd Green-Funktion (DE-588)4158123-4 gnd Streutheorie (DE-588)4183697-2 gnd |
topic_facet | bicssc / Electrical engineering bicssc / Nanotechnology bicssc / Optical physics bisacsh / TECHNOLOGY & ENGINEERING / Nanotechnology & MEMS bisacsh / TECHNOLOGY & ENGINEERING / Electrical Nanooptik Green-Funktion Streutheorie |
work_keys_str_mv | AT søndergaardthomasm greensfunctionintegralequationmethodsinnanooptics |