Differential geometry and general relativity: Volume 1
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer
[2023]
Beijing Science Press [2023] |
Schriftenreihe: | Graduate texts in physics
Graduate texts in physics |
Schlagworte: | |
Beschreibung: | This book, the first in a three-volume set, explains general relativity using the mathematical tool of differential geometry. The book consists of ten chapters, the first five of which introduce differential geometry, which is widely applicable even outside the field of relativity. Chapter 6 analyzes special relativity using geometric language. In turn, the last four chapters introduce readers to the fundamentals of general relativity. Intended for beginners, this volume includes numerous exercises and worked-out example in each chapter to facilitate the learning experience. Chiefly written for graduate-level courses, the book’s content will also benefit upper-level undergraduate students, and can be used as a reference guide for practicing theoretical physicists Topological Spaces in Brief.- Manifolds and Tensor Fields.- The Riemann (Intrinsic) Curvature Tensor.- Lie Derivative, Killing Fields and Hypersurfaces.- Differential Forms and Their Integrals.- Special Relativity.- Foundations of General Relativity.- Solving the Einstein’s Equation.- Schwarzschild Spacetimes.- Cosmology.- Appendix: The Conversion Between Systems of Geometrized and Nongeometrized Units |
Beschreibung: | xxx, 546 Seiten Illustrationen, Diagramme |
ISBN: | 9789819900213 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV049381953 | ||
003 | DE-604 | ||
005 | 20231031 | ||
007 | t | ||
008 | 231025s2023 a||| |||| 00||| eng d | ||
020 | |a 9789819900213 |9 978-981-99-0021-3 | ||
035 | |a (OCoLC)1409115627 | ||
035 | |a (DE-599)BVBBV049381953 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-19 | ||
100 | 1 | |a Liang, Canbin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Differential geometry and general relativity |n Volume 1 |c Canbin Liang, Bin Zhou |
264 | 1 | |a Singapore |b Springer |c [2023] | |
264 | 1 | |a Beijing |b Science Press |c [2023] | |
300 | |a xxx, 546 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Graduate texts in physics | |
490 | 0 | |a Graduate texts in physics | |
500 | |a This book, the first in a three-volume set, explains general relativity using the mathematical tool of differential geometry. The book consists of ten chapters, the first five of which introduce differential geometry, which is widely applicable even outside the field of relativity. Chapter 6 analyzes special relativity using geometric language. In turn, the last four chapters introduce readers to the fundamentals of general relativity. Intended for beginners, this volume includes numerous exercises and worked-out example in each chapter to facilitate the learning experience. Chiefly written for graduate-level courses, the book’s content will also benefit upper-level undergraduate students, and can be used as a reference guide for practicing theoretical physicists | ||
500 | |a Topological Spaces in Brief.- Manifolds and Tensor Fields.- The Riemann (Intrinsic) Curvature Tensor.- Lie Derivative, Killing Fields and Hypersurfaces.- Differential Forms and Their Integrals.- Special Relativity.- Foundations of General Relativity.- Solving the Einstein’s Equation.- Schwarzschild Spacetimes.- Cosmology.- Appendix: The Conversion Between Systems of Geometrized and Nongeometrized Units | ||
650 | 0 | 7 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |D s |
689 | 0 | 1 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Zhou, Bin |e Verfasser |4 aut | |
773 | 0 | 8 | |w (DE-604)BV049381937 |g 1 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-99-0022-0 |
999 | |a oai:aleph.bib-bvb.de:BVB01-034709574 |
Datensatz im Suchindex
_version_ | 1804186084573184000 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Liang, Canbin Zhou, Bin |
author_facet | Liang, Canbin Zhou, Bin |
author_role | aut aut |
author_sort | Liang, Canbin |
author_variant | c l cl b z bz |
building | Verbundindex |
bvnumber | BV049381953 |
ctrlnum | (OCoLC)1409115627 (DE-599)BVBBV049381953 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02563nam a2200409 cc4500</leader><controlfield tag="001">BV049381953</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231031 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">231025s2023 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789819900213</subfield><subfield code="9">978-981-99-0021-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1409115627</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049381953</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liang, Canbin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential geometry and general relativity</subfield><subfield code="n">Volume 1</subfield><subfield code="c">Canbin Liang, Bin Zhou</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing</subfield><subfield code="b">Science Press</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxx, 546 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate texts in physics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate texts in physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book, the first in a three-volume set, explains general relativity using the mathematical tool of differential geometry. The book consists of ten chapters, the first five of which introduce differential geometry, which is widely applicable even outside the field of relativity. Chapter 6 analyzes special relativity using geometric language. In turn, the last four chapters introduce readers to the fundamentals of general relativity. Intended for beginners, this volume includes numerous exercises and worked-out example in each chapter to facilitate the learning experience. Chiefly written for graduate-level courses, the book’s content will also benefit upper-level undergraduate students, and can be used as a reference guide for practicing theoretical physicists</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Topological Spaces in Brief.- Manifolds and Tensor Fields.- The Riemann (Intrinsic) Curvature Tensor.- Lie Derivative, Killing Fields and Hypersurfaces.- Differential Forms and Their Integrals.- Special Relativity.- Foundations of General Relativity.- Solving the Einstein’s Equation.- Schwarzschild Spacetimes.- Cosmology.- Appendix: The Conversion Between Systems of Geometrized and Nongeometrized Units</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Bin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV049381937</subfield><subfield code="g">1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-99-0022-0</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034709574</subfield></datafield></record></collection> |
id | DE-604.BV049381953 |
illustrated | Illustrated |
index_date | 2024-07-03T22:59:22Z |
indexdate | 2024-07-10T10:05:30Z |
institution | BVB |
isbn | 9789819900213 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034709574 |
oclc_num | 1409115627 |
open_access_boolean | |
owner | DE-29T DE-19 DE-BY-UBM |
owner_facet | DE-29T DE-19 DE-BY-UBM |
physical | xxx, 546 Seiten Illustrationen, Diagramme |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Springer Science Press |
record_format | marc |
series2 | Graduate texts in physics |
spelling | Liang, Canbin Verfasser aut Differential geometry and general relativity Volume 1 Canbin Liang, Bin Zhou Singapore Springer [2023] Beijing Science Press [2023] xxx, 546 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Graduate texts in physics This book, the first in a three-volume set, explains general relativity using the mathematical tool of differential geometry. The book consists of ten chapters, the first five of which introduce differential geometry, which is widely applicable even outside the field of relativity. Chapter 6 analyzes special relativity using geometric language. In turn, the last four chapters introduce readers to the fundamentals of general relativity. Intended for beginners, this volume includes numerous exercises and worked-out example in each chapter to facilitate the learning experience. Chiefly written for graduate-level courses, the book’s content will also benefit upper-level undergraduate students, and can be used as a reference guide for practicing theoretical physicists Topological Spaces in Brief.- Manifolds and Tensor Fields.- The Riemann (Intrinsic) Curvature Tensor.- Lie Derivative, Killing Fields and Hypersurfaces.- Differential Forms and Their Integrals.- Special Relativity.- Foundations of General Relativity.- Solving the Einstein’s Equation.- Schwarzschild Spacetimes.- Cosmology.- Appendix: The Conversion Between Systems of Geometrized and Nongeometrized Units Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Allgemeine Relativitätstheorie (DE-588)4112491-1 s Differentialgeometrie (DE-588)4012248-7 s DE-604 Zhou, Bin Verfasser aut (DE-604)BV049381937 1 Erscheint auch als Online-Ausgabe 978-981-99-0022-0 |
spellingShingle | Liang, Canbin Zhou, Bin Differential geometry and general relativity Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
subject_GND | (DE-588)4112491-1 (DE-588)4012248-7 |
title | Differential geometry and general relativity |
title_auth | Differential geometry and general relativity |
title_exact_search | Differential geometry and general relativity |
title_exact_search_txtP | Differential geometry and general relativity |
title_full | Differential geometry and general relativity Volume 1 Canbin Liang, Bin Zhou |
title_fullStr | Differential geometry and general relativity Volume 1 Canbin Liang, Bin Zhou |
title_full_unstemmed | Differential geometry and general relativity Volume 1 Canbin Liang, Bin Zhou |
title_short | Differential geometry and general relativity |
title_sort | differential geometry and general relativity |
topic | Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
topic_facet | Allgemeine Relativitätstheorie Differentialgeometrie |
volume_link | (DE-604)BV049381937 |
work_keys_str_mv | AT liangcanbin differentialgeometryandgeneralrelativityvolume1 AT zhoubin differentialgeometryandgeneralrelativityvolume1 |