Machine learning with Python cookbook: practical solutions from preprocessing to deep learning
This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems, from loading...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Beijing
O'Reilly
July 2023
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | FHD01 |
Zusammenfassung: | This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems, from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Supporting vector machines (SVM), naṽe Bayes, clustering, and tree-based models Saving, loading, and serving trained models from multiple frameworks |
Beschreibung: | 1 Online-Ressource (xiv, 398 Seiten) |
ISBN: | 9781098135690 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV049367428 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 231016s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781098135690 |9 978-1-098-13569-0 | ||
035 | |a (OCoLC)1409115639 | ||
035 | |a (DE-599)BVBBV049367428 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
100 | 1 | |a Gallatin, Kyle |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine learning with Python cookbook |b practical solutions from preprocessing to deep learning |c Kyle Gallatin and Chris Albon |
250 | |a Second edition | ||
264 | 1 | |a Beijing |b O'Reilly |c July 2023 | |
300 | |a 1 Online-Ressource (xiv, 398 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover -- Copyright -- Table of Contents -- Preface -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Chapter 1. Working with Vectors, Matrices, and Arrays in NumPy -- 1.0 Introduction -- 1.1 Creating a Vector -- Problem -- Solution -- Discussion -- See Also -- 1.2 Creating a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.3 Creating a Sparse Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.4 Preallocating NumPy Arrays -- Problem -- Solution -- Discussion -- 1.5 Selecting Elements -- Problem | |
505 | 8 | |a Solution -- Discussion -- 1.6 Describing a Matrix -- Problem -- Solution -- Discussion -- 1.7 Applying Functions over Each Element -- Problem -- Solution -- Discussion -- 1.8 Finding the Maximum and Minimum Values -- Problem -- Solution -- Discussion -- 1.9 Calculating the Average, Variance, and Standard Deviation -- Problem -- Solution -- Discussion -- 1.10 Reshaping Arrays -- Problem -- Solution -- Discussion -- 1.11 Transposing a Vector or Matrix -- Problem -- Solution -- Discussion -- 1.12 Flattening a Matrix -- Problem -- Solution -- Discussion -- 1.13 Finding the Rank of a Matrix -- Problem | |
505 | 8 | |a Solution -- Discussion -- See Also -- 1.14 Getting the Diagonal of a Matrix -- Problem -- Solution -- Discussion -- 1.15 Calculating the Trace of a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.16 Calculating Dot Products -- Problem -- Solution -- Discussion -- See Also -- 1.17 Adding and Subtracting Matrices -- Problem -- Solution -- Discussion -- 1.18 Multiplying Matrices -- Problem -- Solution -- Discussion -- See Also -- 1.19 Inverting a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.20 Generating Random Values -- Problem -- Solution -- Discussion | |
505 | 8 | |a Chapter 2. Loading Data -- 2.0 Introduction -- 2.1 Loading a Sample Dataset -- Problem -- Solution -- Discussion -- See Also -- 2.2 Creating a Simulated Dataset -- Problem -- Solution -- Discussion -- See Also -- 2.3 Loading a CSV File -- Problem -- Solution -- Discussion -- 2.4 Loading an Excel File -- Problem -- Solution -- Discussion -- 2.5 Loading a JSON File -- Problem -- Solution -- Discussion -- See Also -- 2.6 Loading a Parquet File -- Problem -- Solution -- Discussion -- See Also -- 2.7 Loading an Avro File -- Problem -- Solution -- Discussion -- See Also | |
505 | 8 | |a 2.8 Querying a SQLite Database -- Problem -- Solution -- Discussion -- See Also -- 2.9 Querying a Remote SQL Database -- Problem -- Solution -- Discussion -- See Also -- 2.10 Loading Data from a Google Sheet -- Problem -- Solution -- Discussion -- See Also -- 2.11 Loading Data from an S3 Bucket -- Problem -- Solution -- Discussion -- See Also -- 2.12 Loading Unstructured Data -- Problem -- Solution -- Discussion -- See Also -- Chapter 3. Data Wrangling -- 3.0 Introduction -- 3.1 Creating a Dataframe -- Problem -- Solution -- Discussion -- 3.2 Getting Information about the Data -- Problem | |
520 | |a This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems, from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Supporting vector machines (SVM), naṽe Bayes, clustering, and tree-based models Saving, loading, and serving trained models from multiple frameworks | ||
650 | 4 | |a Machine learning | |
650 | 4 | |a Python (Computer program language) | |
650 | 4 | |a Data mining | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Exploration de données (Informatique) | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Albon, Chris |e Verfasser |0 (DE-588)1165271796 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-098-13572-0 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034627456 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=30667288 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804185911632592896 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Gallatin, Kyle Albon, Chris |
author_GND | (DE-588)1165271796 |
author_facet | Gallatin, Kyle Albon, Chris |
author_role | aut aut |
author_sort | Gallatin, Kyle |
author_variant | k g kg c a ca |
building | Verbundindex |
bvnumber | BV049367428 |
classification_rvk | ST 250 ST 300 ST 302 |
collection | ZDB-30-PQE |
contents | Cover -- Copyright -- Table of Contents -- Preface -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Chapter 1. Working with Vectors, Matrices, and Arrays in NumPy -- 1.0 Introduction -- 1.1 Creating a Vector -- Problem -- Solution -- Discussion -- See Also -- 1.2 Creating a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.3 Creating a Sparse Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.4 Preallocating NumPy Arrays -- Problem -- Solution -- Discussion -- 1.5 Selecting Elements -- Problem Solution -- Discussion -- 1.6 Describing a Matrix -- Problem -- Solution -- Discussion -- 1.7 Applying Functions over Each Element -- Problem -- Solution -- Discussion -- 1.8 Finding the Maximum and Minimum Values -- Problem -- Solution -- Discussion -- 1.9 Calculating the Average, Variance, and Standard Deviation -- Problem -- Solution -- Discussion -- 1.10 Reshaping Arrays -- Problem -- Solution -- Discussion -- 1.11 Transposing a Vector or Matrix -- Problem -- Solution -- Discussion -- 1.12 Flattening a Matrix -- Problem -- Solution -- Discussion -- 1.13 Finding the Rank of a Matrix -- Problem Solution -- Discussion -- See Also -- 1.14 Getting the Diagonal of a Matrix -- Problem -- Solution -- Discussion -- 1.15 Calculating the Trace of a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.16 Calculating Dot Products -- Problem -- Solution -- Discussion -- See Also -- 1.17 Adding and Subtracting Matrices -- Problem -- Solution -- Discussion -- 1.18 Multiplying Matrices -- Problem -- Solution -- Discussion -- See Also -- 1.19 Inverting a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.20 Generating Random Values -- Problem -- Solution -- Discussion Chapter 2. Loading Data -- 2.0 Introduction -- 2.1 Loading a Sample Dataset -- Problem -- Solution -- Discussion -- See Also -- 2.2 Creating a Simulated Dataset -- Problem -- Solution -- Discussion -- See Also -- 2.3 Loading a CSV File -- Problem -- Solution -- Discussion -- 2.4 Loading an Excel File -- Problem -- Solution -- Discussion -- 2.5 Loading a JSON File -- Problem -- Solution -- Discussion -- See Also -- 2.6 Loading a Parquet File -- Problem -- Solution -- Discussion -- See Also -- 2.7 Loading an Avro File -- Problem -- Solution -- Discussion -- See Also 2.8 Querying a SQLite Database -- Problem -- Solution -- Discussion -- See Also -- 2.9 Querying a Remote SQL Database -- Problem -- Solution -- Discussion -- See Also -- 2.10 Loading Data from a Google Sheet -- Problem -- Solution -- Discussion -- See Also -- 2.11 Loading Data from an S3 Bucket -- Problem -- Solution -- Discussion -- See Also -- 2.12 Loading Unstructured Data -- Problem -- Solution -- Discussion -- See Also -- Chapter 3. Data Wrangling -- 3.0 Introduction -- 3.1 Creating a Dataframe -- Problem -- Solution -- Discussion -- 3.2 Getting Information about the Data -- Problem |
ctrlnum | (OCoLC)1409115639 (DE-599)BVBBV049367428 |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06201nmm a2200553 c 4500</leader><controlfield tag="001">BV049367428</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231016s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098135690</subfield><subfield code="9">978-1-098-13569-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1409115639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049367428</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gallatin, Kyle</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning with Python cookbook</subfield><subfield code="b">practical solutions from preprocessing to deep learning</subfield><subfield code="c">Kyle Gallatin and Chris Albon</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">July 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 398 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Copyright -- Table of Contents -- Preface -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Chapter 1. Working with Vectors, Matrices, and Arrays in NumPy -- 1.0 Introduction -- 1.1 Creating a Vector -- Problem -- Solution -- Discussion -- See Also -- 1.2 Creating a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.3 Creating a Sparse Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.4 Preallocating NumPy Arrays -- Problem -- Solution -- Discussion -- 1.5 Selecting Elements -- Problem</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Solution -- Discussion -- 1.6 Describing a Matrix -- Problem -- Solution -- Discussion -- 1.7 Applying Functions over Each Element -- Problem -- Solution -- Discussion -- 1.8 Finding the Maximum and Minimum Values -- Problem -- Solution -- Discussion -- 1.9 Calculating the Average, Variance, and Standard Deviation -- Problem -- Solution -- Discussion -- 1.10 Reshaping Arrays -- Problem -- Solution -- Discussion -- 1.11 Transposing a Vector or Matrix -- Problem -- Solution -- Discussion -- 1.12 Flattening a Matrix -- Problem -- Solution -- Discussion -- 1.13 Finding the Rank of a Matrix -- Problem</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Solution -- Discussion -- See Also -- 1.14 Getting the Diagonal of a Matrix -- Problem -- Solution -- Discussion -- 1.15 Calculating the Trace of a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.16 Calculating Dot Products -- Problem -- Solution -- Discussion -- See Also -- 1.17 Adding and Subtracting Matrices -- Problem -- Solution -- Discussion -- 1.18 Multiplying Matrices -- Problem -- Solution -- Discussion -- See Also -- 1.19 Inverting a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.20 Generating Random Values -- Problem -- Solution -- Discussion</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 2. Loading Data -- 2.0 Introduction -- 2.1 Loading a Sample Dataset -- Problem -- Solution -- Discussion -- See Also -- 2.2 Creating a Simulated Dataset -- Problem -- Solution -- Discussion -- See Also -- 2.3 Loading a CSV File -- Problem -- Solution -- Discussion -- 2.4 Loading an Excel File -- Problem -- Solution -- Discussion -- 2.5 Loading a JSON File -- Problem -- Solution -- Discussion -- See Also -- 2.6 Loading a Parquet File -- Problem -- Solution -- Discussion -- See Also -- 2.7 Loading an Avro File -- Problem -- Solution -- Discussion -- See Also</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.8 Querying a SQLite Database -- Problem -- Solution -- Discussion -- See Also -- 2.9 Querying a Remote SQL Database -- Problem -- Solution -- Discussion -- See Also -- 2.10 Loading Data from a Google Sheet -- Problem -- Solution -- Discussion -- See Also -- 2.11 Loading Data from an S3 Bucket -- Problem -- Solution -- Discussion -- See Also -- 2.12 Loading Unstructured Data -- Problem -- Solution -- Discussion -- See Also -- Chapter 3. Data Wrangling -- 3.0 Introduction -- 3.1 Creating a Dataframe -- Problem -- Solution -- Discussion -- 3.2 Getting Information about the Data -- Problem</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems, from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Supporting vector machines (SVM), naṽe Bayes, clustering, and tree-based models Saving, loading, and serving trained models from multiple frameworks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albon, Chris</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1165271796</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-098-13572-0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034627456</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=30667288</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049367428 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:53:33Z |
indexdate | 2024-07-10T10:02:45Z |
institution | BVB |
isbn | 9781098135690 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034627456 |
oclc_num | 1409115639 |
open_access_boolean | |
owner | DE-1050 |
owner_facet | DE-1050 |
physical | 1 Online-Ressource (xiv, 398 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | O'Reilly |
record_format | marc |
spelling | Gallatin, Kyle Verfasser aut Machine learning with Python cookbook practical solutions from preprocessing to deep learning Kyle Gallatin and Chris Albon Second edition Beijing O'Reilly July 2023 1 Online-Ressource (xiv, 398 Seiten) txt rdacontent c rdamedia cr rdacarrier Cover -- Copyright -- Table of Contents -- Preface -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Chapter 1. Working with Vectors, Matrices, and Arrays in NumPy -- 1.0 Introduction -- 1.1 Creating a Vector -- Problem -- Solution -- Discussion -- See Also -- 1.2 Creating a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.3 Creating a Sparse Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.4 Preallocating NumPy Arrays -- Problem -- Solution -- Discussion -- 1.5 Selecting Elements -- Problem Solution -- Discussion -- 1.6 Describing a Matrix -- Problem -- Solution -- Discussion -- 1.7 Applying Functions over Each Element -- Problem -- Solution -- Discussion -- 1.8 Finding the Maximum and Minimum Values -- Problem -- Solution -- Discussion -- 1.9 Calculating the Average, Variance, and Standard Deviation -- Problem -- Solution -- Discussion -- 1.10 Reshaping Arrays -- Problem -- Solution -- Discussion -- 1.11 Transposing a Vector or Matrix -- Problem -- Solution -- Discussion -- 1.12 Flattening a Matrix -- Problem -- Solution -- Discussion -- 1.13 Finding the Rank of a Matrix -- Problem Solution -- Discussion -- See Also -- 1.14 Getting the Diagonal of a Matrix -- Problem -- Solution -- Discussion -- 1.15 Calculating the Trace of a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.16 Calculating Dot Products -- Problem -- Solution -- Discussion -- See Also -- 1.17 Adding and Subtracting Matrices -- Problem -- Solution -- Discussion -- 1.18 Multiplying Matrices -- Problem -- Solution -- Discussion -- See Also -- 1.19 Inverting a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.20 Generating Random Values -- Problem -- Solution -- Discussion Chapter 2. Loading Data -- 2.0 Introduction -- 2.1 Loading a Sample Dataset -- Problem -- Solution -- Discussion -- See Also -- 2.2 Creating a Simulated Dataset -- Problem -- Solution -- Discussion -- See Also -- 2.3 Loading a CSV File -- Problem -- Solution -- Discussion -- 2.4 Loading an Excel File -- Problem -- Solution -- Discussion -- 2.5 Loading a JSON File -- Problem -- Solution -- Discussion -- See Also -- 2.6 Loading a Parquet File -- Problem -- Solution -- Discussion -- See Also -- 2.7 Loading an Avro File -- Problem -- Solution -- Discussion -- See Also 2.8 Querying a SQLite Database -- Problem -- Solution -- Discussion -- See Also -- 2.9 Querying a Remote SQL Database -- Problem -- Solution -- Discussion -- See Also -- 2.10 Loading Data from a Google Sheet -- Problem -- Solution -- Discussion -- See Also -- 2.11 Loading Data from an S3 Bucket -- Problem -- Solution -- Discussion -- See Also -- 2.12 Loading Unstructured Data -- Problem -- Solution -- Discussion -- See Also -- Chapter 3. Data Wrangling -- 3.0 Introduction -- 3.1 Creating a Dataframe -- Problem -- Solution -- Discussion -- 3.2 Getting Information about the Data -- Problem This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems, from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Supporting vector machines (SVM), naṽe Bayes, clustering, and tree-based models Saving, loading, and serving trained models from multiple frameworks Machine learning Python (Computer program language) Data mining Apprentissage automatique Python (Langage de programmation) Exploration de données (Informatique) Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Albon, Chris Verfasser (DE-588)1165271796 aut Erscheint auch als Druck-Ausgabe 978-1-098-13572-0 |
spellingShingle | Gallatin, Kyle Albon, Chris Machine learning with Python cookbook practical solutions from preprocessing to deep learning Cover -- Copyright -- Table of Contents -- Preface -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Chapter 1. Working with Vectors, Matrices, and Arrays in NumPy -- 1.0 Introduction -- 1.1 Creating a Vector -- Problem -- Solution -- Discussion -- See Also -- 1.2 Creating a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.3 Creating a Sparse Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.4 Preallocating NumPy Arrays -- Problem -- Solution -- Discussion -- 1.5 Selecting Elements -- Problem Solution -- Discussion -- 1.6 Describing a Matrix -- Problem -- Solution -- Discussion -- 1.7 Applying Functions over Each Element -- Problem -- Solution -- Discussion -- 1.8 Finding the Maximum and Minimum Values -- Problem -- Solution -- Discussion -- 1.9 Calculating the Average, Variance, and Standard Deviation -- Problem -- Solution -- Discussion -- 1.10 Reshaping Arrays -- Problem -- Solution -- Discussion -- 1.11 Transposing a Vector or Matrix -- Problem -- Solution -- Discussion -- 1.12 Flattening a Matrix -- Problem -- Solution -- Discussion -- 1.13 Finding the Rank of a Matrix -- Problem Solution -- Discussion -- See Also -- 1.14 Getting the Diagonal of a Matrix -- Problem -- Solution -- Discussion -- 1.15 Calculating the Trace of a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.16 Calculating Dot Products -- Problem -- Solution -- Discussion -- See Also -- 1.17 Adding and Subtracting Matrices -- Problem -- Solution -- Discussion -- 1.18 Multiplying Matrices -- Problem -- Solution -- Discussion -- See Also -- 1.19 Inverting a Matrix -- Problem -- Solution -- Discussion -- See Also -- 1.20 Generating Random Values -- Problem -- Solution -- Discussion Chapter 2. Loading Data -- 2.0 Introduction -- 2.1 Loading a Sample Dataset -- Problem -- Solution -- Discussion -- See Also -- 2.2 Creating a Simulated Dataset -- Problem -- Solution -- Discussion -- See Also -- 2.3 Loading a CSV File -- Problem -- Solution -- Discussion -- 2.4 Loading an Excel File -- Problem -- Solution -- Discussion -- 2.5 Loading a JSON File -- Problem -- Solution -- Discussion -- See Also -- 2.6 Loading a Parquet File -- Problem -- Solution -- Discussion -- See Also -- 2.7 Loading an Avro File -- Problem -- Solution -- Discussion -- See Also 2.8 Querying a SQLite Database -- Problem -- Solution -- Discussion -- See Also -- 2.9 Querying a Remote SQL Database -- Problem -- Solution -- Discussion -- See Also -- 2.10 Loading Data from a Google Sheet -- Problem -- Solution -- Discussion -- See Also -- 2.11 Loading Data from an S3 Bucket -- Problem -- Solution -- Discussion -- See Also -- 2.12 Loading Unstructured Data -- Problem -- Solution -- Discussion -- See Also -- Chapter 3. Data Wrangling -- 3.0 Introduction -- 3.1 Creating a Dataframe -- Problem -- Solution -- Discussion -- 3.2 Getting Information about the Data -- Problem Machine learning Python (Computer program language) Data mining Apprentissage automatique Python (Langage de programmation) Exploration de données (Informatique) Maschinelles Lernen (DE-588)4193754-5 gnd Python Programmiersprache (DE-588)4434275-5 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4434275-5 |
title | Machine learning with Python cookbook practical solutions from preprocessing to deep learning |
title_auth | Machine learning with Python cookbook practical solutions from preprocessing to deep learning |
title_exact_search | Machine learning with Python cookbook practical solutions from preprocessing to deep learning |
title_exact_search_txtP | Machine learning with Python cookbook practical solutions from preprocessing to deep learning |
title_full | Machine learning with Python cookbook practical solutions from preprocessing to deep learning Kyle Gallatin and Chris Albon |
title_fullStr | Machine learning with Python cookbook practical solutions from preprocessing to deep learning Kyle Gallatin and Chris Albon |
title_full_unstemmed | Machine learning with Python cookbook practical solutions from preprocessing to deep learning Kyle Gallatin and Chris Albon |
title_short | Machine learning with Python cookbook |
title_sort | machine learning with python cookbook practical solutions from preprocessing to deep learning |
title_sub | practical solutions from preprocessing to deep learning |
topic | Machine learning Python (Computer program language) Data mining Apprentissage automatique Python (Langage de programmation) Exploration de données (Informatique) Maschinelles Lernen (DE-588)4193754-5 gnd Python Programmiersprache (DE-588)4434275-5 gnd |
topic_facet | Machine learning Python (Computer program language) Data mining Apprentissage automatique Python (Langage de programmation) Exploration de données (Informatique) Maschinelles Lernen Python Programmiersprache |
work_keys_str_mv | AT gallatinkyle machinelearningwithpythoncookbookpracticalsolutionsfrompreprocessingtodeeplearning AT albonchris machinelearningwithpythoncookbookpracticalsolutionsfrompreprocessingtodeeplearning |