The general linear model: a primer
General Linear Model methods are the most widely used in data analysis in applied empirical research. Still, there exists no compact text that can be used in statistics courses and as a guide in data analysis. This volume fills this void by introducing the General Linear Model (GLM), whose basic con...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom
Cambridge University Press
2023
|
Schlagworte: | |
Online-Zugang: | BSB01 UBG01 URL des Erstveröffentlichers |
Zusammenfassung: | General Linear Model methods are the most widely used in data analysis in applied empirical research. Still, there exists no compact text that can be used in statistics courses and as a guide in data analysis. This volume fills this void by introducing the General Linear Model (GLM), whose basic concept is that an observed variable can be explained from weighted independent variables plus an additive error term that reflects imperfections of the model and measurement error. It also covers multivariate regression, analysis of variance, analysis under consideration of covariates, variable selection methods, symmetric regression, and the recently developed methods of recursive partitioning and direction dependence analysis. Each method is formally derived and embedded in the GLM, and characteristics of these methods are highlighted. Real-world data examples illustrate the application of each of these methods, and it is shown how results can be interpreted |
Beschreibung: | Title from publisher's bibliographic system (viewed on 15 Jun 2023) |
Beschreibung: | 1 Online-Ressource (xiv, 175 Seiten) |
ISBN: | 9781009322164 |
DOI: | 10.1017/9781009322164 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049341505 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230925s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781009322164 |c Online |9 978-1-00-932216-4 | ||
024 | 7 | |a 10.1017/9781009322164 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009322164 | ||
035 | |a (OCoLC)1401200067 | ||
035 | |a (DE-599)BVBBV049341505 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 | ||
082 | 0 | |a 519.5/36 | |
100 | 1 | |a Eye, Alexander von |d 1949- |0 (DE-588)108576639 |4 aut | |
245 | 1 | 0 | |a The general linear model |b a primer |c Alexander von Eye, Michigan State University, Wolfgang Wiedermann, University of Missouri |
264 | 1 | |a Cambridge, United Kingdom |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (xiv, 175 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 15 Jun 2023) | ||
520 | |a General Linear Model methods are the most widely used in data analysis in applied empirical research. Still, there exists no compact text that can be used in statistics courses and as a guide in data analysis. This volume fills this void by introducing the General Linear Model (GLM), whose basic concept is that an observed variable can be explained from weighted independent variables plus an additive error term that reflects imperfections of the model and measurement error. It also covers multivariate regression, analysis of variance, analysis under consideration of covariates, variable selection methods, symmetric regression, and the recently developed methods of recursive partitioning and direction dependence analysis. Each method is formally derived and embedded in the GLM, and characteristics of these methods are highlighted. Real-world data examples illustrate the application of each of these methods, and it is shown how results can be interpreted | ||
650 | 4 | |a Linear models (Statistics) | |
650 | 4 | |a Social sciences / Statistical methods | |
650 | 4 | |a Statistics | |
700 | 1 | |a Wiedermann, Wolfgang |d 1981- |0 (DE-588)1108324592 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-009-32217-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-009-32215-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009322164 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034602064 | ||
966 | e | |u https://doi.org/10.1017/9781009322164 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009322164 |l UBG01 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804185867619663872 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Eye, Alexander von 1949- Wiedermann, Wolfgang 1981- |
author_GND | (DE-588)108576639 (DE-588)1108324592 |
author_facet | Eye, Alexander von 1949- Wiedermann, Wolfgang 1981- |
author_role | aut aut |
author_sort | Eye, Alexander von 1949- |
author_variant | a v e av ave w w ww |
building | Verbundindex |
bvnumber | BV049341505 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009322164 (OCoLC)1401200067 (DE-599)BVBBV049341505 |
dewey-full | 519.5/36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/36 |
dewey-search | 519.5/36 |
dewey-sort | 3519.5 236 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781009322164 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02724nmm a2200433zc 4500</leader><controlfield tag="001">BV049341505</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230925s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009322164</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-932216-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009322164</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009322164</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1401200067</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049341505</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/36</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eye, Alexander von</subfield><subfield code="d">1949-</subfield><subfield code="0">(DE-588)108576639</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The general linear model</subfield><subfield code="b">a primer</subfield><subfield code="c">Alexander von Eye, Michigan State University, Wolfgang Wiedermann, University of Missouri</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 175 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 15 Jun 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">General Linear Model methods are the most widely used in data analysis in applied empirical research. Still, there exists no compact text that can be used in statistics courses and as a guide in data analysis. This volume fills this void by introducing the General Linear Model (GLM), whose basic concept is that an observed variable can be explained from weighted independent variables plus an additive error term that reflects imperfections of the model and measurement error. It also covers multivariate regression, analysis of variance, analysis under consideration of covariates, variable selection methods, symmetric regression, and the recently developed methods of recursive partitioning and direction dependence analysis. Each method is formally derived and embedded in the GLM, and characteristics of these methods are highlighted. Real-world data examples illustrate the application of each of these methods, and it is shown how results can be interpreted</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear models (Statistics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social sciences / Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiedermann, Wolfgang</subfield><subfield code="d">1981-</subfield><subfield code="0">(DE-588)1108324592</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-009-32217-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-009-32215-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009322164</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034602064</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009322164</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009322164</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049341505 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:47:06Z |
indexdate | 2024-07-10T10:02:03Z |
institution | BVB |
isbn | 9781009322164 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034602064 |
oclc_num | 1401200067 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (xiv, 175 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Eye, Alexander von 1949- (DE-588)108576639 aut The general linear model a primer Alexander von Eye, Michigan State University, Wolfgang Wiedermann, University of Missouri Cambridge, United Kingdom Cambridge University Press 2023 1 Online-Ressource (xiv, 175 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 15 Jun 2023) General Linear Model methods are the most widely used in data analysis in applied empirical research. Still, there exists no compact text that can be used in statistics courses and as a guide in data analysis. This volume fills this void by introducing the General Linear Model (GLM), whose basic concept is that an observed variable can be explained from weighted independent variables plus an additive error term that reflects imperfections of the model and measurement error. It also covers multivariate regression, analysis of variance, analysis under consideration of covariates, variable selection methods, symmetric regression, and the recently developed methods of recursive partitioning and direction dependence analysis. Each method is formally derived and embedded in the GLM, and characteristics of these methods are highlighted. Real-world data examples illustrate the application of each of these methods, and it is shown how results can be interpreted Linear models (Statistics) Social sciences / Statistical methods Statistics Wiedermann, Wolfgang 1981- (DE-588)1108324592 aut Erscheint auch als Druck-Ausgabe 978-1-009-32217-1 Erscheint auch als Druck-Ausgabe 978-1-009-32215-7 https://doi.org/10.1017/9781009322164 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Eye, Alexander von 1949- Wiedermann, Wolfgang 1981- The general linear model a primer Linear models (Statistics) Social sciences / Statistical methods Statistics |
title | The general linear model a primer |
title_auth | The general linear model a primer |
title_exact_search | The general linear model a primer |
title_exact_search_txtP | The general linear model a primer |
title_full | The general linear model a primer Alexander von Eye, Michigan State University, Wolfgang Wiedermann, University of Missouri |
title_fullStr | The general linear model a primer Alexander von Eye, Michigan State University, Wolfgang Wiedermann, University of Missouri |
title_full_unstemmed | The general linear model a primer Alexander von Eye, Michigan State University, Wolfgang Wiedermann, University of Missouri |
title_short | The general linear model |
title_sort | the general linear model a primer |
title_sub | a primer |
topic | Linear models (Statistics) Social sciences / Statistical methods Statistics |
topic_facet | Linear models (Statistics) Social sciences / Statistical methods Statistics |
url | https://doi.org/10.1017/9781009322164 |
work_keys_str_mv | AT eyealexandervon thegenerallinearmodelaprimer AT wiedermannwolfgang thegenerallinearmodelaprimer |