Big data analytics: a guide to data science practitioners making the transition to big data
"Successfully navigating the data-driven economy presupposes a certain understanding of the technologies and methods to gain insights from Big Data. This book aims to help data science practitioners to successfully manage the transition to Big Data. Building on familiar content from applied eco...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Abingdon
Chapman & Hall
2024
|
Ausgabe: | First edition |
Schriftenreihe: | Chapman & Hall/CRC data science series
|
Schlagworte: | |
Zusammenfassung: | "Successfully navigating the data-driven economy presupposes a certain understanding of the technologies and methods to gain insights from Big Data. This book aims to help data science practitioners to successfully manage the transition to Big Data. Building on familiar content from applied econometrics and business analytics, this book introduces the reader to the basic concepts of Big Data Analytics. The focus of the book is on how to productively apply econometric and machine learning techniques with large, complex data sets, as well as on all the steps involved before analysing the data (data storage, data import, data preparation). The book combines conceptual and theoretical material with the practical application of the concepts using R and SQL. The reader will thus acquire the skills to analyse large data sets, both locally and in the cloud. Various code examples and tutorials, focused on empirical economic and business research, illustrate practical techniques to handle and analyse Big Data. The book is a valuable resource for data science practitioners, graduate students and researchers who aim to gain insights from big data in the context of research questions in business, economics, and the social sciences"-- |
Beschreibung: | xviii, 309 Seiten Illustrationen, Diagramme |
ISBN: | 9781032457550 9781032458144 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV049339540 | ||
003 | DE-604 | ||
005 | 20240807 | ||
007 | t | ||
008 | 230922s2024 a||| b||| 00||| eng d | ||
020 | |a 9781032457550 |c hbk |9 978-1-032-45755-0 | ||
020 | |a 9781032458144 |c pbk |9 978-1-032-45814-4 | ||
035 | |a (OCoLC)1409133918 | ||
035 | |a (DE-599)BVBBV049339540 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-739 |a DE-573 | ||
084 | |a QH 500 |0 (DE-625)141607: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
100 | 1 | |a Matter, Ulrich |e Verfasser |0 (DE-588)1037878787 |4 aut | |
245 | 1 | 0 | |a Big data analytics |b a guide to data science practitioners making the transition to big data |c Ulrich Matter |
250 | |a First edition | ||
264 | 1 | |a Abingdon |b Chapman & Hall |c 2024 | |
300 | |a xviii, 309 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Chapman & Hall/CRC data science series | |
520 | 3 | |a "Successfully navigating the data-driven economy presupposes a certain understanding of the technologies and methods to gain insights from Big Data. This book aims to help data science practitioners to successfully manage the transition to Big Data. Building on familiar content from applied econometrics and business analytics, this book introduces the reader to the basic concepts of Big Data Analytics. The focus of the book is on how to productively apply econometric and machine learning techniques with large, complex data sets, as well as on all the steps involved before analysing the data (data storage, data import, data preparation). The book combines conceptual and theoretical material with the practical application of the concepts using R and SQL. The reader will thus acquire the skills to analyse large data sets, both locally and in the cloud. Various code examples and tutorials, focused on empirical economic and business research, illustrate practical techniques to handle and analyse Big Data. The book is a valuable resource for data science practitioners, graduate students and researchers who aim to gain insights from big data in the context of research questions in business, economics, and the social sciences"-- | |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
653 | 0 | |a Big data | |
653 | 0 | |a Machine learning | |
653 | 0 | |a Business / Data processing | |
653 | 0 | |a Big data | |
653 | 0 | |a Business / Data processing | |
653 | 0 | |a Machine learning | |
689 | 0 | 0 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-003-37882-2 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034600156 |
Datensatz im Suchindex
_version_ | 1806776083675086848 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Matter, Ulrich |
author_GND | (DE-588)1037878787 |
author_facet | Matter, Ulrich |
author_role | aut |
author_sort | Matter, Ulrich |
author_variant | u m um |
building | Verbundindex |
bvnumber | BV049339540 |
classification_rvk | QH 500 ST 530 |
ctrlnum | (OCoLC)1409133918 (DE-599)BVBBV049339540 |
discipline | Informatik Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
edition | First edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV049339540</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240807</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230922s2024 a||| b||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781032457550</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-032-45755-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781032458144</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-032-45814-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1409133918</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049339540</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 500</subfield><subfield code="0">(DE-625)141607:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Matter, Ulrich</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1037878787</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big data analytics</subfield><subfield code="b">a guide to data science practitioners making the transition to big data</subfield><subfield code="c">Ulrich Matter</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Abingdon</subfield><subfield code="b">Chapman & Hall</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 309 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman & Hall/CRC data science series</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Successfully navigating the data-driven economy presupposes a certain understanding of the technologies and methods to gain insights from Big Data. This book aims to help data science practitioners to successfully manage the transition to Big Data. Building on familiar content from applied econometrics and business analytics, this book introduces the reader to the basic concepts of Big Data Analytics. The focus of the book is on how to productively apply econometric and machine learning techniques with large, complex data sets, as well as on all the steps involved before analysing the data (data storage, data import, data preparation). The book combines conceptual and theoretical material with the practical application of the concepts using R and SQL. The reader will thus acquire the skills to analyse large data sets, both locally and in the cloud. Various code examples and tutorials, focused on empirical economic and business research, illustrate practical techniques to handle and analyse Big Data. The book is a valuable resource for data science practitioners, graduate students and researchers who aim to gain insights from big data in the context of research questions in business, economics, and the social sciences"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Business / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Business / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-003-37882-2</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034600156</subfield></datafield></record></collection> |
id | DE-604.BV049339540 |
illustrated | Illustrated |
index_date | 2024-07-03T22:46:42Z |
indexdate | 2024-08-08T00:12:26Z |
institution | BVB |
isbn | 9781032457550 9781032458144 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034600156 |
oclc_num | 1409133918 |
open_access_boolean | |
owner | DE-739 DE-573 |
owner_facet | DE-739 DE-573 |
physical | xviii, 309 Seiten Illustrationen, Diagramme |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Chapman & Hall |
record_format | marc |
series2 | Chapman & Hall/CRC data science series |
spelling | Matter, Ulrich Verfasser (DE-588)1037878787 aut Big data analytics a guide to data science practitioners making the transition to big data Ulrich Matter First edition Abingdon Chapman & Hall 2024 xviii, 309 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Chapman & Hall/CRC data science series "Successfully navigating the data-driven economy presupposes a certain understanding of the technologies and methods to gain insights from Big Data. This book aims to help data science practitioners to successfully manage the transition to Big Data. Building on familiar content from applied econometrics and business analytics, this book introduces the reader to the basic concepts of Big Data Analytics. The focus of the book is on how to productively apply econometric and machine learning techniques with large, complex data sets, as well as on all the steps involved before analysing the data (data storage, data import, data preparation). The book combines conceptual and theoretical material with the practical application of the concepts using R and SQL. The reader will thus acquire the skills to analyse large data sets, both locally and in the cloud. Various code examples and tutorials, focused on empirical economic and business research, illustrate practical techniques to handle and analyse Big Data. The book is a valuable resource for data science practitioners, graduate students and researchers who aim to gain insights from big data in the context of research questions in business, economics, and the social sciences"-- Big Data (DE-588)4802620-7 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Big data Machine learning Business / Data processing Big Data (DE-588)4802620-7 s Datenanalyse (DE-588)4123037-1 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Erscheint auch als Online-Ausgabe 978-1-003-37882-2 |
spellingShingle | Matter, Ulrich Big data analytics a guide to data science practitioners making the transition to big data Big Data (DE-588)4802620-7 gnd Datenanalyse (DE-588)4123037-1 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4802620-7 (DE-588)4123037-1 (DE-588)4193754-5 |
title | Big data analytics a guide to data science practitioners making the transition to big data |
title_auth | Big data analytics a guide to data science practitioners making the transition to big data |
title_exact_search | Big data analytics a guide to data science practitioners making the transition to big data |
title_exact_search_txtP | Big data analytics a guide to data science practitioners making the transition to big data |
title_full | Big data analytics a guide to data science practitioners making the transition to big data Ulrich Matter |
title_fullStr | Big data analytics a guide to data science practitioners making the transition to big data Ulrich Matter |
title_full_unstemmed | Big data analytics a guide to data science practitioners making the transition to big data Ulrich Matter |
title_short | Big data analytics |
title_sort | big data analytics a guide to data science practitioners making the transition to big data |
title_sub | a guide to data science practitioners making the transition to big data |
topic | Big Data (DE-588)4802620-7 gnd Datenanalyse (DE-588)4123037-1 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Big Data Datenanalyse Maschinelles Lernen |
work_keys_str_mv | AT matterulrich bigdataanalyticsaguidetodatasciencepractitionersmakingthetransitiontobigdata |