The shape of data: network science, geometry-based machine learning, and topological data analysis in R
"The Shape of Data shows how to use geometry- and topology-based algorithms for machine learning. The book focuses on practical applications rather than dense mathematical concepts, with coding examples using social network data, text data, medical data, and education data"--
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
San Francisco, CA
No Starch Press
[2023]
|
Schlagworte: | |
Zusammenfassung: | "The Shape of Data shows how to use geometry- and topology-based algorithms for machine learning. The book focuses on practical applications rather than dense mathematical concepts, with coding examples using social network data, text data, medical data, and education data"-- |
Beschreibung: | Includes bibliographical references. - Description based on print version record and CIP data provided by publisher; resource not viewed |
Beschreibung: | xxiii, 233 Seiten Illustrationen, Diagramme |
ISBN: | 9781718503083 |
Internformat
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV049332806 | ||
003 | DE-604 | ||
005 | 20231130 | ||
007 | t | ||
008 | 230919s2023 a||| |||| 00||| eng d | ||
020 | |a 9781718503083 |9 978-1-71850-308-3 | ||
035 | |a (OCoLC)1398174480 | ||
035 | |a (DE-599)BVBBV049332806 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 006.3/1 |2 23 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
100 | 1 | |a Farrelly, Colleen |e Verfasser |4 aut | |
245 | 1 | 0 | |a The shape of data |b network science, geometry-based machine learning, and topological data analysis in R |c by Colleen M. Farrelly and Yaé Ulrich Gaba |
264 | 1 | |a San Francisco, CA |b No Starch Press |c [2023] | |
300 | |a xxiii, 233 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references. - Description based on print version record and CIP data provided by publisher; resource not viewed | ||
520 | 3 | |a "The Shape of Data shows how to use geometry- and topology-based algorithms for machine learning. The book focuses on practical applications rather than dense mathematical concepts, with coding examples using social network data, text data, medical data, and education data"-- | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
653 | 0 | |a Geometric programming | |
653 | 0 | |a Topology | |
653 | 0 | |a Machine learning | |
653 | 0 | |a System analysis / Data processing | |
653 | 0 | |a R (Computer program language) | |
653 | 0 | |a Geometric programming | |
653 | 0 | |a Machine learning | |
653 | 0 | |a R (Computer program language) | |
653 | 0 | |a System analysis ; Data processing | |
653 | 0 | |a Topology | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 2 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Gaba, Yaé Ulrich |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-7185-0309-0 |
999 | |a oai:aleph.bib-bvb.de:BVB01-034593523 |
Datensatz im Suchindex
_version_ | 1804185850007781376 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Farrelly, Colleen Gaba, Yaé Ulrich |
author_facet | Farrelly, Colleen Gaba, Yaé Ulrich |
author_role | aut aut |
author_sort | Farrelly, Colleen |
author_variant | c f cf y u g yu yug |
building | Verbundindex |
bvnumber | BV049332806 |
classification_rvk | ST 300 ST 601 |
ctrlnum | (OCoLC)1398174480 (DE-599)BVBBV049332806 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02290nam a22005411c 4500</leader><controlfield tag="001">BV049332806</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231130 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230919s2023 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781718503083</subfield><subfield code="9">978-1-71850-308-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1398174480</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049332806</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farrelly, Colleen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The shape of data</subfield><subfield code="b">network science, geometry-based machine learning, and topological data analysis in R</subfield><subfield code="c">by Colleen M. Farrelly and Yaé Ulrich Gaba</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Francisco, CA</subfield><subfield code="b">No Starch Press</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiii, 233 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references. - Description based on print version record and CIP data provided by publisher; resource not viewed</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"The Shape of Data shows how to use geometry- and topology-based algorithms for machine learning. The book focuses on practical applications rather than dense mathematical concepts, with coding examples using social network data, text data, medical data, and education data"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geometric programming</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Topology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">System analysis / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geometric programming</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">System analysis ; Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Topology</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gaba, Yaé Ulrich</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-7185-0309-0</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034593523</subfield></datafield></record></collection> |
id | DE-604.BV049332806 |
illustrated | Illustrated |
index_date | 2024-07-03T22:45:39Z |
indexdate | 2024-07-10T10:01:47Z |
institution | BVB |
isbn | 9781718503083 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034593523 |
oclc_num | 1398174480 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xxiii, 233 Seiten Illustrationen, Diagramme |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | No Starch Press |
record_format | marc |
spelling | Farrelly, Colleen Verfasser aut The shape of data network science, geometry-based machine learning, and topological data analysis in R by Colleen M. Farrelly and Yaé Ulrich Gaba San Francisco, CA No Starch Press [2023] xxiii, 233 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references. - Description based on print version record and CIP data provided by publisher; resource not viewed "The Shape of Data shows how to use geometry- and topology-based algorithms for machine learning. The book focuses on practical applications rather than dense mathematical concepts, with coding examples using social network data, text data, medical data, and education data"-- Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf R Programm (DE-588)4705956-4 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Geometric programming Topology Machine learning System analysis / Data processing R (Computer program language) System analysis ; Data processing Maschinelles Lernen (DE-588)4193754-5 s Datenanalyse (DE-588)4123037-1 s R Programm (DE-588)4705956-4 s DE-604 Gaba, Yaé Ulrich Verfasser aut Erscheint auch als Online-Ausgabe 978-1-7185-0309-0 |
spellingShingle | Farrelly, Colleen Gaba, Yaé Ulrich The shape of data network science, geometry-based machine learning, and topological data analysis in R Maschinelles Lernen (DE-588)4193754-5 gnd R Programm (DE-588)4705956-4 gnd Datenanalyse (DE-588)4123037-1 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4705956-4 (DE-588)4123037-1 |
title | The shape of data network science, geometry-based machine learning, and topological data analysis in R |
title_auth | The shape of data network science, geometry-based machine learning, and topological data analysis in R |
title_exact_search | The shape of data network science, geometry-based machine learning, and topological data analysis in R |
title_exact_search_txtP | The shape of data network science, geometry-based machine learning, and topological data analysis in R |
title_full | The shape of data network science, geometry-based machine learning, and topological data analysis in R by Colleen M. Farrelly and Yaé Ulrich Gaba |
title_fullStr | The shape of data network science, geometry-based machine learning, and topological data analysis in R by Colleen M. Farrelly and Yaé Ulrich Gaba |
title_full_unstemmed | The shape of data network science, geometry-based machine learning, and topological data analysis in R by Colleen M. Farrelly and Yaé Ulrich Gaba |
title_short | The shape of data |
title_sort | the shape of data network science geometry based machine learning and topological data analysis in r |
title_sub | network science, geometry-based machine learning, and topological data analysis in R |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd R Programm (DE-588)4705956-4 gnd Datenanalyse (DE-588)4123037-1 gnd |
topic_facet | Maschinelles Lernen R Programm Datenanalyse |
work_keys_str_mv | AT farrellycolleen theshapeofdatanetworksciencegeometrybasedmachinelearningandtopologicaldataanalysisinr AT gabayaeulrich theshapeofdatanetworksciencegeometrybasedmachinelearningandtopologicaldataanalysisinr |