The Calabi problem for Fano threefolds:
Algebraic varieties are shapes defined by polynomial equations. Smooth Fano threefolds are a fundamental subclass that can be thought of as higher-dimensional generalizations of ordinary spheres. They belong to 105 irreducible deformation families. This book determines whether the general element of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2023
|
Schriftenreihe: | London Mathematical Society lecture note series
485 |
Schlagworte: | |
Online-Zugang: | BSB01 BTU01 FHN01 Volltext |
Zusammenfassung: | Algebraic varieties are shapes defined by polynomial equations. Smooth Fano threefolds are a fundamental subclass that can be thought of as higher-dimensional generalizations of ordinary spheres. They belong to 105 irreducible deformation families. This book determines whether the general element of each family admits a Kähler-Einstein metric (and for many families, for all elements), addressing a question going back to Calabi 70 years ago. Its solution exploits the relation between these metrics and the algebraic notion of K-stability. Moreover, it presents many different techniques to prove the existence of a Kähler-Einstein metric, containing many additional relevant results such as the classification of all Kähler-Einstein smooth Fano threefolds with infinite automorphism groups and computations of delta-invariants of all smooth del Pezzo surfaces |
Beschreibung: | Also issued in print: 2023. - Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (vii, 441 Seiten) Illustrationen |
ISBN: | 9781009193382 |
DOI: | 10.1017/9781009193382 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV049330701 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230918s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781009193382 |c Online |9 978-1-00-919338-2 | ||
024 | 7 | |a 10.1017/9781009193382 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009193382 | ||
035 | |a (OCoLC)1401204713 | ||
035 | |a (DE-599)BVBBV049330701 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 | ||
082 | 0 | |a 516.353 | |
100 | 1 | |a Araujo, Carolina |0 (DE-588)1203661479 |4 aut | |
245 | 1 | 0 | |a The Calabi problem for Fano threefolds |c Carolina Araujo [and eight others] |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (vii, 441 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
336 | |b sti |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 485 | |
500 | |a Also issued in print: 2023. - Includes bibliographical references and index | ||
520 | |a Algebraic varieties are shapes defined by polynomial equations. Smooth Fano threefolds are a fundamental subclass that can be thought of as higher-dimensional generalizations of ordinary spheres. They belong to 105 irreducible deformation families. This book determines whether the general element of each family admits a Kähler-Einstein metric (and for many families, for all elements), addressing a question going back to Calabi 70 years ago. Its solution exploits the relation between these metrics and the algebraic notion of K-stability. Moreover, it presents many different techniques to prove the existence of a Kähler-Einstein metric, containing many additional relevant results such as the classification of all Kähler-Einstein smooth Fano threefolds with infinite automorphism groups and computations of delta-invariants of all smooth del Pezzo surfaces | ||
650 | 4 | |a Threefolds (Algebraic geometry) | |
710 | 2 | |a London Mathematical Society |e Sonstige |0 (DE-588)1011030-6 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-009-19339-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009193382 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034591456 | ||
966 | e | |u https://doi.org/10.1017/9781009193382 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009193382 |l BTU01 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009193382 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804185847269949440 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Araujo, Carolina |
author_GND | (DE-588)1203661479 |
author_facet | Araujo, Carolina |
author_role | aut |
author_sort | Araujo, Carolina |
author_variant | c a ca |
building | Verbundindex |
bvnumber | BV049330701 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009193382 (OCoLC)1401204713 (DE-599)BVBBV049330701 |
dewey-full | 516.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.353 |
dewey-search | 516.353 |
dewey-sort | 3516.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781009193382 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02651nmm a2200433zcb4500</leader><controlfield tag="001">BV049330701</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230918s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009193382</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-919338-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009193382</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009193382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1401204713</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049330701</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.353</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Araujo, Carolina</subfield><subfield code="0">(DE-588)1203661479</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Calabi problem for Fano threefolds</subfield><subfield code="c">Carolina Araujo [and eight others]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 441 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">sti</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">485</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Also issued in print: 2023. - Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Algebraic varieties are shapes defined by polynomial equations. Smooth Fano threefolds are a fundamental subclass that can be thought of as higher-dimensional generalizations of ordinary spheres. They belong to 105 irreducible deformation families. This book determines whether the general element of each family admits a Kähler-Einstein metric (and for many families, for all elements), addressing a question going back to Calabi 70 years ago. Its solution exploits the relation between these metrics and the algebraic notion of K-stability. Moreover, it presents many different techniques to prove the existence of a Kähler-Einstein metric, containing many additional relevant results such as the classification of all Kähler-Einstein smooth Fano threefolds with infinite automorphism groups and computations of delta-invariants of all smooth del Pezzo surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Threefolds (Algebraic geometry)</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">London Mathematical Society</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1011030-6</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-009-19339-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009193382</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034591456</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009193382</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009193382</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009193382</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049330701 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:45:12Z |
indexdate | 2024-07-10T10:01:43Z |
institution | BVB |
institution_GND | (DE-588)1011030-6 |
isbn | 9781009193382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034591456 |
oclc_num | 1401204713 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 |
owner_facet | DE-12 DE-92 DE-634 |
physical | 1 Online-Ressource (vii, 441 Seiten) Illustrationen |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Araujo, Carolina (DE-588)1203661479 aut The Calabi problem for Fano threefolds Carolina Araujo [and eight others] Cambridge Cambridge University Press 2023 1 Online-Ressource (vii, 441 Seiten) Illustrationen txt rdacontent sti rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 485 Also issued in print: 2023. - Includes bibliographical references and index Algebraic varieties are shapes defined by polynomial equations. Smooth Fano threefolds are a fundamental subclass that can be thought of as higher-dimensional generalizations of ordinary spheres. They belong to 105 irreducible deformation families. This book determines whether the general element of each family admits a Kähler-Einstein metric (and for many families, for all elements), addressing a question going back to Calabi 70 years ago. Its solution exploits the relation between these metrics and the algebraic notion of K-stability. Moreover, it presents many different techniques to prove the existence of a Kähler-Einstein metric, containing many additional relevant results such as the classification of all Kähler-Einstein smooth Fano threefolds with infinite automorphism groups and computations of delta-invariants of all smooth del Pezzo surfaces Threefolds (Algebraic geometry) London Mathematical Society Sonstige (DE-588)1011030-6 oth Erscheint auch als Druck-Ausgabe 978-1-009-19339-9 https://doi.org/10.1017/9781009193382 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Araujo, Carolina The Calabi problem for Fano threefolds Threefolds (Algebraic geometry) |
title | The Calabi problem for Fano threefolds |
title_auth | The Calabi problem for Fano threefolds |
title_exact_search | The Calabi problem for Fano threefolds |
title_exact_search_txtP | The Calabi problem for Fano threefolds |
title_full | The Calabi problem for Fano threefolds Carolina Araujo [and eight others] |
title_fullStr | The Calabi problem for Fano threefolds Carolina Araujo [and eight others] |
title_full_unstemmed | The Calabi problem for Fano threefolds Carolina Araujo [and eight others] |
title_short | The Calabi problem for Fano threefolds |
title_sort | the calabi problem for fano threefolds |
topic | Threefolds (Algebraic geometry) |
topic_facet | Threefolds (Algebraic geometry) |
url | https://doi.org/10.1017/9781009193382 |
work_keys_str_mv | AT araujocarolina thecalabiproblemforfanothreefolds AT londonmathematicalsociety thecalabiproblemforfanothreefolds |