The Calabi problem for Fano threefolds:

Algebraic varieties are shapes defined by polynomial equations. Smooth Fano threefolds are a fundamental subclass that can be thought of as higher-dimensional generalizations of ordinary spheres. They belong to 105 irreducible deformation families. This book determines whether the general element of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Araujo, Carolina (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2023
Schriftenreihe:London Mathematical Society lecture note series 485
Schlagworte:
Online-Zugang:BSB01
BTU01
FHN01
Volltext
Zusammenfassung:Algebraic varieties are shapes defined by polynomial equations. Smooth Fano threefolds are a fundamental subclass that can be thought of as higher-dimensional generalizations of ordinary spheres. They belong to 105 irreducible deformation families. This book determines whether the general element of each family admits a Kähler-Einstein metric (and for many families, for all elements), addressing a question going back to Calabi 70 years ago. Its solution exploits the relation between these metrics and the algebraic notion of K-stability. Moreover, it presents many different techniques to prove the existence of a Kähler-Einstein metric, containing many additional relevant results such as the classification of all Kähler-Einstein smooth Fano threefolds with infinite automorphism groups and computations of delta-invariants of all smooth del Pezzo surfaces
Beschreibung:Also issued in print: 2023. - Includes bibliographical references and index
Beschreibung:1 Online-Ressource (vii, 441 Seiten) Illustrationen
ISBN:9781009193382
DOI:10.1017/9781009193382

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen