The geometry of cubic hypersurfaces:
Cubic hypersurfaces are described by almost the simplest possible polynomial equations, yet their behaviour is rich enough to demonstrate many of the central challenges in algebraic geometry. With exercises and detailed references to the wider literature, this thorough text introduces cubic hypersur...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2023
|
Schriftenreihe: | Cambridge studies in advanced mathematics
206 |
Schlagworte: | |
Online-Zugang: | BSB01 BTU01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | Cubic hypersurfaces are described by almost the simplest possible polynomial equations, yet their behaviour is rich enough to demonstrate many of the central challenges in algebraic geometry. With exercises and detailed references to the wider literature, this thorough text introduces cubic hypersurfaces and all the techniques needed to study them. The book starts by laying the foundations for the study of cubic hypersurfaces and of many other algebraic varieties, covering cohomology and Hodge theory of hypersurfaces, moduli spaces of those and Fano varieties of linear subspaces contained in hypersurfaces. The next three chapters examine the general machinery applied to cubic hypersurfaces of dimension two, three, and four. Finally, the author looks at cubic hypersurfaces from a categorical point of view and describes motivic features. Based on the author's lecture courses, this is an ideal text for graduate students as well as an invaluable reference for researchers in algebraic geometry |
Beschreibung: | Title from publisher's bibliographic system (viewed on 15 Jun 2023) Basic facts -- Fano varieties of lines -- Moduli spaces -- Cubic surfaces -- Cubic threefolds -- Cubic fourfolds -- Derived categories of cubic hypersurfaces |
Beschreibung: | 1 Online-Ressource (xvii, 441 Seiten) |
ISBN: | 9781009280020 |
DOI: | 10.1017/9781009280020 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV049329224 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230915s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781009280020 |c Online |9 978-1-00-928002-0 | ||
024 | 7 | |a 10.1017/9781009280020 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009280020 | ||
035 | |a (OCoLC)1401218189 | ||
035 | |a (DE-599)BVBBV049329224 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 | ||
082 | 0 | |a 516.3/52 | |
100 | 1 | |a Huybrechts, Daniel |d 1966- |0 (DE-588)113483716 |4 aut | |
245 | 1 | 0 | |a The geometry of cubic hypersurfaces |c Daniel Huybrechts |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (xvii, 441 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge studies in advanced mathematics |v 206 | |
500 | |a Title from publisher's bibliographic system (viewed on 15 Jun 2023) | ||
500 | |a Basic facts -- Fano varieties of lines -- Moduli spaces -- Cubic surfaces -- Cubic threefolds -- Cubic fourfolds -- Derived categories of cubic hypersurfaces | ||
520 | |a Cubic hypersurfaces are described by almost the simplest possible polynomial equations, yet their behaviour is rich enough to demonstrate many of the central challenges in algebraic geometry. With exercises and detailed references to the wider literature, this thorough text introduces cubic hypersurfaces and all the techniques needed to study them. The book starts by laying the foundations for the study of cubic hypersurfaces and of many other algebraic varieties, covering cohomology and Hodge theory of hypersurfaces, moduli spaces of those and Fano varieties of linear subspaces contained in hypersurfaces. The next three chapters examine the general machinery applied to cubic hypersurfaces of dimension two, three, and four. Finally, the author looks at cubic hypersurfaces from a categorical point of view and describes motivic features. Based on the author's lecture courses, this is an ideal text for graduate students as well as an invaluable reference for researchers in algebraic geometry | ||
650 | 4 | |a Surfaces, Cubic | |
650 | 4 | |a Hypersurfaces | |
650 | 4 | |a Equations, Cubic | |
650 | 4 | |a Geometry, Algebraic | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-009-28000-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009280020 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034590030 | ||
966 | e | |u https://doi.org/10.1017/9781009280020 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009280020 |l BTU01 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009280020 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804185844521631744 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Huybrechts, Daniel 1966- |
author_GND | (DE-588)113483716 |
author_facet | Huybrechts, Daniel 1966- |
author_role | aut |
author_sort | Huybrechts, Daniel 1966- |
author_variant | d h dh |
building | Verbundindex |
bvnumber | BV049329224 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009280020 (OCoLC)1401218189 (DE-599)BVBBV049329224 |
dewey-full | 516.3/52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/52 |
dewey-search | 516.3/52 |
dewey-sort | 3516.3 252 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781009280020 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02892nmm a2200457zcb4500</leader><controlfield tag="001">BV049329224</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230915s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009280020</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-928002-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009280020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009280020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1401218189</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049329224</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/52</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huybrechts, Daniel</subfield><subfield code="d">1966-</subfield><subfield code="0">(DE-588)113483716</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The geometry of cubic hypersurfaces</subfield><subfield code="c">Daniel Huybrechts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 441 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">206</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 15 Jun 2023)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Basic facts -- Fano varieties of lines -- Moduli spaces -- Cubic surfaces -- Cubic threefolds -- Cubic fourfolds -- Derived categories of cubic hypersurfaces</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cubic hypersurfaces are described by almost the simplest possible polynomial equations, yet their behaviour is rich enough to demonstrate many of the central challenges in algebraic geometry. With exercises and detailed references to the wider literature, this thorough text introduces cubic hypersurfaces and all the techniques needed to study them. The book starts by laying the foundations for the study of cubic hypersurfaces and of many other algebraic varieties, covering cohomology and Hodge theory of hypersurfaces, moduli spaces of those and Fano varieties of linear subspaces contained in hypersurfaces. The next three chapters examine the general machinery applied to cubic hypersurfaces of dimension two, three, and four. Finally, the author looks at cubic hypersurfaces from a categorical point of view and describes motivic features. Based on the author's lecture courses, this is an ideal text for graduate students as well as an invaluable reference for researchers in algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces, Cubic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypersurfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equations, Cubic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-009-28000-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009280020</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034590030</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009280020</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009280020</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009280020</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049329224 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:44:54Z |
indexdate | 2024-07-10T10:01:41Z |
institution | BVB |
isbn | 9781009280020 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034590030 |
oclc_num | 1401218189 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 |
owner_facet | DE-12 DE-92 DE-634 |
physical | 1 Online-Ressource (xvii, 441 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge studies in advanced mathematics |
spelling | Huybrechts, Daniel 1966- (DE-588)113483716 aut The geometry of cubic hypersurfaces Daniel Huybrechts Cambridge Cambridge University Press 2023 1 Online-Ressource (xvii, 441 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 206 Title from publisher's bibliographic system (viewed on 15 Jun 2023) Basic facts -- Fano varieties of lines -- Moduli spaces -- Cubic surfaces -- Cubic threefolds -- Cubic fourfolds -- Derived categories of cubic hypersurfaces Cubic hypersurfaces are described by almost the simplest possible polynomial equations, yet their behaviour is rich enough to demonstrate many of the central challenges in algebraic geometry. With exercises and detailed references to the wider literature, this thorough text introduces cubic hypersurfaces and all the techniques needed to study them. The book starts by laying the foundations for the study of cubic hypersurfaces and of many other algebraic varieties, covering cohomology and Hodge theory of hypersurfaces, moduli spaces of those and Fano varieties of linear subspaces contained in hypersurfaces. The next three chapters examine the general machinery applied to cubic hypersurfaces of dimension two, three, and four. Finally, the author looks at cubic hypersurfaces from a categorical point of view and describes motivic features. Based on the author's lecture courses, this is an ideal text for graduate students as well as an invaluable reference for researchers in algebraic geometry Surfaces, Cubic Hypersurfaces Equations, Cubic Geometry, Algebraic Erscheint auch als Druck-Ausgabe 978-1-009-28000-6 https://doi.org/10.1017/9781009280020 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Huybrechts, Daniel 1966- The geometry of cubic hypersurfaces Surfaces, Cubic Hypersurfaces Equations, Cubic Geometry, Algebraic |
title | The geometry of cubic hypersurfaces |
title_auth | The geometry of cubic hypersurfaces |
title_exact_search | The geometry of cubic hypersurfaces |
title_exact_search_txtP | The geometry of cubic hypersurfaces |
title_full | The geometry of cubic hypersurfaces Daniel Huybrechts |
title_fullStr | The geometry of cubic hypersurfaces Daniel Huybrechts |
title_full_unstemmed | The geometry of cubic hypersurfaces Daniel Huybrechts |
title_short | The geometry of cubic hypersurfaces |
title_sort | the geometry of cubic hypersurfaces |
topic | Surfaces, Cubic Hypersurfaces Equations, Cubic Geometry, Algebraic |
topic_facet | Surfaces, Cubic Hypersurfaces Equations, Cubic Geometry, Algebraic |
url | https://doi.org/10.1017/9781009280020 |
work_keys_str_mv | AT huybrechtsdaniel thegeometryofcubichypersurfaces |