The Volume of Vector Fields on Riemannian Manifolds: Main Results and Open Problems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer Nature Switzerland
2023
Cham Springer |
Ausgabe: | 1st ed. 2023 |
Schriftenreihe: | Lecture Notes in Mathematics
2336 |
Schlagworte: | |
Online-Zugang: | BTU01 FHD01 FHN01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBM01 UBT01 UBW01 UBY01 UEI01 UPA01 URL des Erstveröffentlichers |
Beschreibung: | 1 Online-Ressource (VIII, 126 p) |
ISBN: | 9783031368578 |
ISSN: | 1617-9692 |
DOI: | 10.1007/978-3-031-36857-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV049320705 | ||
003 | DE-604 | ||
005 | 20230919 | ||
007 | cr|uuu---uuuuu | ||
008 | 230911s2023 |||| o||u| ||||||eng d | ||
020 | |a 9783031368578 |c Online |9 978-3-031-36857-8 | ||
024 | 7 | |a 10.1007/978-3-031-36857-8 |2 doi | |
035 | |a (ZDB-2-SMA)9783031368578 | ||
035 | |a (ZDB-2-LNM)9783031368578 | ||
035 | |a (OCoLC)1401199476 | ||
035 | |a (DE-599)BVBBV049320705 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-188 |a DE-523 |a DE-863 |a DE-1050 |a DE-20 |a DE-862 |a DE-92 |a DE-824 |a DE-703 |a DE-706 |a DE-739 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gil-Medrano, O. |e Verfasser |0 (DE-588)1271401134 |4 aut | |
245 | 1 | 0 | |a The Volume of Vector Fields on Riemannian Manifolds |b Main Results and Open Problems |c by Olga Gil-Medrano |
250 | |a 1st ed. 2023 | ||
264 | 1 | |a Cham |b Springer Nature Switzerland |c 2023 | |
264 | 1 | |a Cham |b Springer | |
300 | |a 1 Online-Ressource (VIII, 126 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Mathematics |v 2336 |x 1617-9692 | |
650 | 4 | |a Geometry | |
650 | 4 | |a Analysis | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematical analysis | |
650 | 4 | |a Geometry, Differential | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Manifolds (Mathematics) | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-031-36856-1 |w (DE-604)BV049331912 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-031-36858-5 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-031-36857-8 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-LNM | ||
940 | 1 | |q ZDB-2-SMA_2023 | |
940 | 1 | |q ZDB-2-LNM_2023 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034581642 | ||
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l BTU01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l FHD01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l FHN01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l FHR01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l FRO01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l FWS01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l FWS02 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l HTW01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l TUM01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l UBM01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l UBT01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l UBW01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l UBY01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l UEI01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-36857-8 |l UPA01 |p ZDB-2-LNM |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 1052097 |
---|---|
_version_ | 1806175361950547968 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Gil-Medrano, O. |
author_GND | (DE-588)1271401134 |
author_facet | Gil-Medrano, O. |
author_role | aut |
author_sort | Gil-Medrano, O. |
author_variant | o g m ogm |
building | Verbundindex |
bvnumber | BV049320705 |
classification_rvk | SI 850 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-LNM |
ctrlnum | (ZDB-2-SMA)9783031368578 (ZDB-2-LNM)9783031368578 (OCoLC)1401199476 (DE-599)BVBBV049320705 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-3-031-36857-8 |
edition | 1st ed. 2023 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03402nmm a2200721zcb4500</leader><controlfield tag="001">BV049320705</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230919 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230911s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031368578</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-031-36857-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-031-36857-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783031368578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-LNM)9783031368578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1401199476</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049320705</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gil-Medrano, O.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1271401134</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Volume of Vector Fields on Riemannian Manifolds</subfield><subfield code="b">Main Results and Open Problems</subfield><subfield code="c">by Olga Gil-Medrano</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2023</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer Nature Switzerland</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 126 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Mathematics</subfield><subfield code="v">2336</subfield><subfield code="x">1617-9692</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-031-36856-1</subfield><subfield code="w">(DE-604)BV049331912</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-031-36858-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-LNM</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2023</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-LNM_2023</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034581642</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-36857-8</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049320705 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:43:16Z |
indexdate | 2024-08-01T11:04:13Z |
institution | BVB |
isbn | 9783031368578 |
issn | 1617-9692 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034581642 |
oclc_num | 1401199476 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-703 DE-706 DE-739 DE-634 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-703 DE-706 DE-739 DE-634 |
physical | 1 Online-Ressource (VIII, 126 p) |
psigel | ZDB-2-SMA ZDB-2-LNM ZDB-2-SMA_2023 ZDB-2-LNM_2023 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Springer Nature Switzerland Springer |
record_format | marc |
series2 | Lecture Notes in Mathematics |
spellingShingle | Gil-Medrano, O. The Volume of Vector Fields on Riemannian Manifolds Main Results and Open Problems Geometry Analysis Differential Geometry Global Analysis and Analysis on Manifolds Mathematical analysis Geometry, Differential Global analysis (Mathematics) Manifolds (Mathematics) |
title | The Volume of Vector Fields on Riemannian Manifolds Main Results and Open Problems |
title_auth | The Volume of Vector Fields on Riemannian Manifolds Main Results and Open Problems |
title_exact_search | The Volume of Vector Fields on Riemannian Manifolds Main Results and Open Problems |
title_exact_search_txtP | The Volume of Vector Fields on Riemannian Manifolds Main Results and Open Problems |
title_full | The Volume of Vector Fields on Riemannian Manifolds Main Results and Open Problems by Olga Gil-Medrano |
title_fullStr | The Volume of Vector Fields on Riemannian Manifolds Main Results and Open Problems by Olga Gil-Medrano |
title_full_unstemmed | The Volume of Vector Fields on Riemannian Manifolds Main Results and Open Problems by Olga Gil-Medrano |
title_short | The Volume of Vector Fields on Riemannian Manifolds |
title_sort | the volume of vector fields on riemannian manifolds main results and open problems |
title_sub | Main Results and Open Problems |
topic | Geometry Analysis Differential Geometry Global Analysis and Analysis on Manifolds Mathematical analysis Geometry, Differential Global analysis (Mathematics) Manifolds (Mathematics) |
topic_facet | Geometry Analysis Differential Geometry Global Analysis and Analysis on Manifolds Mathematical analysis Geometry, Differential Global analysis (Mathematics) Manifolds (Mathematics) |
url | https://doi.org/10.1007/978-3-031-36857-8 |
work_keys_str_mv | AT gilmedranoo thevolumeofvectorfieldsonriemannianmanifoldsmainresultsandopenproblems |