P-adic analytic functions:
Ultrametric fields -- Analytic elements and analytic functions -- Meromorphic functions and Nevanlinna theory.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2021]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Review |
Zusammenfassung: | Ultrametric fields -- Analytic elements and analytic functions -- Meromorphic functions and Nevanlinna theory. "P-adic Analytic Functions describes the definition and properties of p-adic analytic and meromorphic functions in a complete algebraically closed ultrametric field. Various properties of p-adic exponential-polynomials are examined, such as the Hermite Lindemann theorem in a p-adic field, with a new proof. The order and type of growth for analytic functions are studied, in the whole field and inside an open disk. P-adic meromorphic functions are studied, not only on the whole field but also in an open disk and on the complemental of a closed disk, using Motzkin meromorphic products. Finally, the p-adic Nevanlinna theory is widely explained, with various applications. Small functions are introduced with results of uniqueness for meromorphic functions. The question of whether the ring of analytic functions - in the whole field or inside an open disk - is a Bezout ring is also examined"-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | viii, 340 Seiten |
ISBN: | 9789811226212 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049311348 | ||
003 | DE-604 | ||
005 | 20231024 | ||
007 | t | ||
008 | 230904s2021 xxu |||| 00||| eng d | ||
020 | |a 9789811226212 |c hardcover |9 978-981-122-621-2 | ||
035 | |a (OCoLC)1237705652 | ||
035 | |a (DE-599)KXP1738973816 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US |a xxk |c XA-GB |a si |c XB-SG |a cc |c XB-CN |a cc |c XB-HK |a cc |c XB-TW |a ii |c XB-IN |a ja |c XB-JP | ||
049 | |a DE-91G | ||
084 | |a 30G06 |2 msc | ||
084 | |a 30-02 |2 msc | ||
084 | |a MAT 107 |2 stub | ||
084 | |a 12J25 |2 msc | ||
084 | |a 46S10 |2 msc | ||
084 | |a 31.43 |2 bkl | ||
100 | 1 | |a Escassut, Alain |e Verfasser |0 (DE-588)114557730X |4 aut | |
245 | 1 | 0 | |a P-adic analytic functions |c Alain Escassut (Université Blaise Pascal, France) |
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2021] | |
300 | |a viii, 340 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a Ultrametric fields -- Analytic elements and analytic functions -- Meromorphic functions and Nevanlinna theory. | |
520 | 3 | |a "P-adic Analytic Functions describes the definition and properties of p-adic analytic and meromorphic functions in a complete algebraically closed ultrametric field. Various properties of p-adic exponential-polynomials are examined, such as the Hermite Lindemann theorem in a p-adic field, with a new proof. The order and type of growth for analytic functions are studied, in the whole field and inside an open disk. P-adic meromorphic functions are studied, not only on the whole field but also in an open disk and on the complemental of a closed disk, using Motzkin meromorphic products. Finally, the p-adic Nevanlinna theory is widely explained, with various applications. Small functions are introduced with results of uniqueness for meromorphic functions. The question of whether the ring of analytic functions - in the whole field or inside an open disk - is a Bezout ring is also examined"-- | |
650 | 0 | 7 | |a p-adische Analysis |0 (DE-588)4252360-6 |2 gnd |9 rswk-swf |
653 | 0 | |a p-adic analysis | |
653 | 0 | |a Analytic functions | |
653 | 0 | |a Nevanlinna theory | |
689 | 0 | 0 | |a p-adische Analysis |0 (DE-588)4252360-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, ebook for institutions |z 978-981-122-622-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, ebook for individuals |z 978-981-122-623-6 |
856 | 4 | 2 | |m B:DE-89 |m V:DE-601 |q pdf/application |u https://www.gbv.de/dms/tib-ub-hannover/1738973816.pdf |3 Inhaltsverzeichnis |
856 | 4 | 2 | |u https://www.zbmath.org/?q=an%3A7343763 |y zbMATH |3 Review |
999 | |a oai:aleph.bib-bvb.de:BVB01-034572457 |
Datensatz im Suchindex
_version_ | 1804185814261825536 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Escassut, Alain |
author_GND | (DE-588)114557730X |
author_facet | Escassut, Alain |
author_role | aut |
author_sort | Escassut, Alain |
author_variant | a e ae |
building | Verbundindex |
bvnumber | BV049311348 |
classification_tum | MAT 107 |
ctrlnum | (OCoLC)1237705652 (DE-599)KXP1738973816 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02854nam a2200493 c 4500</leader><controlfield tag="001">BV049311348</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231024 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230904s2021 xxu |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811226212</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-981-122-621-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1237705652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1738973816</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield><subfield code="a">si</subfield><subfield code="c">XB-SG</subfield><subfield code="a">cc</subfield><subfield code="c">XB-CN</subfield><subfield code="a">cc</subfield><subfield code="c">XB-HK</subfield><subfield code="a">cc</subfield><subfield code="c">XB-TW</subfield><subfield code="a">ii</subfield><subfield code="c">XB-IN</subfield><subfield code="a">ja</subfield><subfield code="c">XB-JP</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30G06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 107</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12J25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">46S10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Escassut, Alain</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114557730X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">P-adic analytic functions</subfield><subfield code="c">Alain Escassut (Université Blaise Pascal, France)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 340 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Ultrametric fields -- Analytic elements and analytic functions -- Meromorphic functions and Nevanlinna theory.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"P-adic Analytic Functions describes the definition and properties of p-adic analytic and meromorphic functions in a complete algebraically closed ultrametric field. Various properties of p-adic exponential-polynomials are examined, such as the Hermite Lindemann theorem in a p-adic field, with a new proof. The order and type of growth for analytic functions are studied, in the whole field and inside an open disk. P-adic meromorphic functions are studied, not only on the whole field but also in an open disk and on the complemental of a closed disk, using Motzkin meromorphic products. Finally, the p-adic Nevanlinna theory is widely explained, with various applications. Small functions are introduced with results of uniqueness for meromorphic functions. The question of whether the ring of analytic functions - in the whole field or inside an open disk - is a Bezout ring is also examined"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">p-adische Analysis</subfield><subfield code="0">(DE-588)4252360-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">p-adic analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analytic functions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nevanlinna theory</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">p-adische Analysis</subfield><subfield code="0">(DE-588)4252360-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, ebook for institutions</subfield><subfield code="z">978-981-122-622-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, ebook for individuals</subfield><subfield code="z">978-981-122-623-6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-89</subfield><subfield code="m">V:DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">https://www.gbv.de/dms/tib-ub-hannover/1738973816.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://www.zbmath.org/?q=an%3A7343763</subfield><subfield code="y">zbMATH</subfield><subfield code="3">Review</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034572457</subfield></datafield></record></collection> |
id | DE-604.BV049311348 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:41:01Z |
indexdate | 2024-07-10T10:01:13Z |
institution | BVB |
isbn | 9789811226212 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034572457 |
oclc_num | 1237705652 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | viii, 340 Seiten |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | World Scientific |
record_format | marc |
spelling | Escassut, Alain Verfasser (DE-588)114557730X aut P-adic analytic functions Alain Escassut (Université Blaise Pascal, France) New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2021] viii, 340 Seiten txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Ultrametric fields -- Analytic elements and analytic functions -- Meromorphic functions and Nevanlinna theory. "P-adic Analytic Functions describes the definition and properties of p-adic analytic and meromorphic functions in a complete algebraically closed ultrametric field. Various properties of p-adic exponential-polynomials are examined, such as the Hermite Lindemann theorem in a p-adic field, with a new proof. The order and type of growth for analytic functions are studied, in the whole field and inside an open disk. P-adic meromorphic functions are studied, not only on the whole field but also in an open disk and on the complemental of a closed disk, using Motzkin meromorphic products. Finally, the p-adic Nevanlinna theory is widely explained, with various applications. Small functions are introduced with results of uniqueness for meromorphic functions. The question of whether the ring of analytic functions - in the whole field or inside an open disk - is a Bezout ring is also examined"-- p-adische Analysis (DE-588)4252360-6 gnd rswk-swf p-adic analysis Analytic functions Nevanlinna theory p-adische Analysis (DE-588)4252360-6 s DE-604 Erscheint auch als Online-Ausgabe, ebook for institutions 978-981-122-622-9 Erscheint auch als Online-Ausgabe, ebook for individuals 978-981-122-623-6 B:DE-89 V:DE-601 pdf/application https://www.gbv.de/dms/tib-ub-hannover/1738973816.pdf Inhaltsverzeichnis https://www.zbmath.org/?q=an%3A7343763 zbMATH Review |
spellingShingle | Escassut, Alain P-adic analytic functions p-adische Analysis (DE-588)4252360-6 gnd |
subject_GND | (DE-588)4252360-6 |
title | P-adic analytic functions |
title_auth | P-adic analytic functions |
title_exact_search | P-adic analytic functions |
title_exact_search_txtP | P-adic analytic functions |
title_full | P-adic analytic functions Alain Escassut (Université Blaise Pascal, France) |
title_fullStr | P-adic analytic functions Alain Escassut (Université Blaise Pascal, France) |
title_full_unstemmed | P-adic analytic functions Alain Escassut (Université Blaise Pascal, France) |
title_short | P-adic analytic functions |
title_sort | p adic analytic functions |
topic | p-adische Analysis (DE-588)4252360-6 gnd |
topic_facet | p-adische Analysis |
url | https://www.gbv.de/dms/tib-ub-hannover/1738973816.pdf https://www.zbmath.org/?q=an%3A7343763 |
work_keys_str_mv | AT escassutalain padicanalyticfunctions |