The elements of universal mathematics, or Algebra: To which is added, a specimen of a commentary on Sir Isaac Newton's universal arithmetic. Containing, demonstrations of his method of finding divisors, and of his rule for extracting the root of a binomial. Also a new rule for determining the form of an assum'd infinite series. Translated from the Latin of G.I.'s Gravesande
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Printed for Samuel Paterson, at Shakespear's Head, opposite Durham-Yard, in the Strand
MDCCLII. [1752]
|
Ausgabe: | The second edition |
Schlagworte: | |
Online-Zugang: | UEI01 BSB01 LCO01 SBR01 UBA01 UBG01 UBM01 UBR01 UBT01 UER01 Volltext |
Beschreibung: | 'Matheseos universalis elementa' was first printed in Leiden in 1727 English Short Title Catalog, T187815 Reproduction of original from Bodleian Library (Oxford) |
Beschreibung: | Online-Ressource (iv,187,[1]Seiten,plates) 8° |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049273805 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230822s1752 xxk|||| o||u| ||||||eng d | ||
035 | |a (ZDB-1-ECC)NLM007145179 | ||
035 | |a (OCoLC)1422416883 | ||
035 | |a (DE-599)GBVNLM007145179 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB | ||
049 | |a DE-12 |a DE-70 |a DE-155 |a DE-384 |a DE-473 |a DE-19 |a DE-355 |a DE-703 |a DE-824 |a DE-29 |a DE-11 | ||
100 | 1 | |a Gravesande, Willem Jacob 's |d 1688-1742 |e Verfasser |4 aut | |
240 | 1 | 0 | |a Matheseos universalis elementa. <engl.> |
245 | 1 | 0 | |a The elements of universal mathematics, or Algebra |b To which is added, a specimen of a commentary on Sir Isaac Newton's universal arithmetic. Containing, demonstrations of his method of finding divisors, and of his rule for extracting the root of a binomial. Also a new rule for determining the form of an assum'd infinite series. Translated from the Latin of G.I.'s Gravesande |
250 | |a The second edition | ||
264 | 1 | |a London |b Printed for Samuel Paterson, at Shakespear's Head, opposite Durham-Yard, in the Strand |c MDCCLII. [1752] | |
300 | |a Online-Ressource (iv,187,[1]Seiten,plates) |c 8° | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a 'Matheseos universalis elementa' was first printed in Leiden in 1727 | ||
500 | |a English Short Title Catalog, T187815 | ||
500 | |a Reproduction of original from Bodleian Library (Oxford) | ||
533 | |a Online-Ausg |b Farmington Hills, Mich |c Cengage Gale |d 2009 |f Eighteenth Century Collections Online |n Electronic reproduction; Available via the World Wide Web |7 |2009|||||||||| | ||
653 | 1 | |a Newton, Isaac / Sir / 1642-1727 / Arithmetica universalis | |
856 | 4 | 0 | |u http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc |x Verlag |3 Volltext |
912 | |a ZDB-1-ECC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034535161 | ||
966 | e | |u http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc |l UEI01 |p ZDB-1-ECC |x Verlag |3 Volltext | |
966 | e | |u http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc |l BSB01 |p ZDB-1-ECC |x Verlag |3 Volltext | |
966 | e | |u http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc |l LCO01 |p ZDB-1-ECC |x Verlag |3 Volltext | |
966 | e | |u http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc |l SBR01 |p ZDB-1-ECC |x Verlag |3 Volltext | |
966 | e | |u http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc |l UBA01 |p ZDB-1-ECC |x Verlag |3 Volltext | |
966 | e | |u http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc |l UBG01 |p ZDB-1-ECC |x Verlag |3 Volltext | |
966 | e | |u http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc |l UBM01 |p ZDB-1-ECC |x Verlag |3 Volltext | |
966 | e | |u http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc |l UBR01 |p ZDB-1-ECC |x Verlag |3 Volltext | |
966 | e | |u http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc |l UBT01 |p ZDB-1-ECC |x Verlag |3 Volltext | |
966 | e | |u http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc |l UER01 |p ZDB-1-ECC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804185753664618496 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Gravesande, Willem Jacob 's 1688-1742 |
author_facet | Gravesande, Willem Jacob 's 1688-1742 |
author_role | aut |
author_sort | Gravesande, Willem Jacob 's 1688-1742 |
author_variant | w j s g wjs wjsg |
building | Verbundindex |
bvnumber | BV049273805 |
collection | ZDB-1-ECC |
ctrlnum | (ZDB-1-ECC)NLM007145179 (OCoLC)1422416883 (DE-599)GBVNLM007145179 |
edition | The second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03214nmm a22004931c 4500</leader><controlfield tag="001">BV049273805</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230822s1752 xxk|||| o||u| ||||||eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-ECC)NLM007145179</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1422416883</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLM007145179</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-155</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gravesande, Willem Jacob 's</subfield><subfield code="d">1688-1742</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Matheseos universalis elementa. <engl.></subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The elements of universal mathematics, or Algebra</subfield><subfield code="b">To which is added, a specimen of a commentary on Sir Isaac Newton's universal arithmetic. Containing, demonstrations of his method of finding divisors, and of his rule for extracting the root of a binomial. Also a new rule for determining the form of an assum'd infinite series. Translated from the Latin of G.I.'s Gravesande</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">The second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Printed for Samuel Paterson, at Shakespear's Head, opposite Durham-Yard, in the Strand</subfield><subfield code="c">MDCCLII. [1752]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource (iv,187,[1]Seiten,plates)</subfield><subfield code="c">8°</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">'Matheseos universalis elementa' was first printed in Leiden in 1727</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">English Short Title Catalog, T187815</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Reproduction of original from Bodleian Library (Oxford)</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="a">Online-Ausg</subfield><subfield code="b">Farmington Hills, Mich</subfield><subfield code="c">Cengage Gale</subfield><subfield code="d">2009</subfield><subfield code="f">Eighteenth Century Collections Online</subfield><subfield code="n">Electronic reproduction; Available via the World Wide Web</subfield><subfield code="7">|2009||||||||||</subfield></datafield><datafield tag="653" ind1=" " ind2="1"><subfield code="a">Newton, Isaac / Sir / 1642-1727 / Arithmetica universalis</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-ECC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034535161</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-1-ECC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-1-ECC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc</subfield><subfield code="l">LCO01</subfield><subfield code="p">ZDB-1-ECC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc</subfield><subfield code="l">SBR01</subfield><subfield code="p">ZDB-1-ECC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-1-ECC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-1-ECC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-1-ECC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-1-ECC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-1-ECC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-1-ECC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049273805 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:37:26Z |
indexdate | 2024-07-10T10:00:15Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034535161 |
oclc_num | 1422416883 |
open_access_boolean | |
owner | DE-12 DE-70 DE-155 DE-BY-UBR DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-824 DE-29 DE-11 |
owner_facet | DE-12 DE-70 DE-155 DE-BY-UBR DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-824 DE-29 DE-11 |
physical | Online-Ressource (iv,187,[1]Seiten,plates) 8° |
psigel | ZDB-1-ECC |
publishDate | 1752 |
publishDateSearch | 1752 |
publishDateSort | 1752 |
publisher | Printed for Samuel Paterson, at Shakespear's Head, opposite Durham-Yard, in the Strand |
record_format | marc |
spelling | Gravesande, Willem Jacob 's 1688-1742 Verfasser aut Matheseos universalis elementa. <engl.> The elements of universal mathematics, or Algebra To which is added, a specimen of a commentary on Sir Isaac Newton's universal arithmetic. Containing, demonstrations of his method of finding divisors, and of his rule for extracting the root of a binomial. Also a new rule for determining the form of an assum'd infinite series. Translated from the Latin of G.I.'s Gravesande The second edition London Printed for Samuel Paterson, at Shakespear's Head, opposite Durham-Yard, in the Strand MDCCLII. [1752] Online-Ressource (iv,187,[1]Seiten,plates) 8° txt rdacontent c rdamedia cr rdacarrier 'Matheseos universalis elementa' was first printed in Leiden in 1727 English Short Title Catalog, T187815 Reproduction of original from Bodleian Library (Oxford) Online-Ausg Farmington Hills, Mich Cengage Gale 2009 Eighteenth Century Collections Online Electronic reproduction; Available via the World Wide Web |2009|||||||||| Newton, Isaac / Sir / 1642-1727 / Arithmetica universalis http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc Verlag Volltext |
spellingShingle | Gravesande, Willem Jacob 's 1688-1742 The elements of universal mathematics, or Algebra To which is added, a specimen of a commentary on Sir Isaac Newton's universal arithmetic. Containing, demonstrations of his method of finding divisors, and of his rule for extracting the root of a binomial. Also a new rule for determining the form of an assum'd infinite series. Translated from the Latin of G.I.'s Gravesande |
title | The elements of universal mathematics, or Algebra To which is added, a specimen of a commentary on Sir Isaac Newton's universal arithmetic. Containing, demonstrations of his method of finding divisors, and of his rule for extracting the root of a binomial. Also a new rule for determining the form of an assum'd infinite series. Translated from the Latin of G.I.'s Gravesande |
title_alt | Matheseos universalis elementa. <engl.> |
title_auth | The elements of universal mathematics, or Algebra To which is added, a specimen of a commentary on Sir Isaac Newton's universal arithmetic. Containing, demonstrations of his method of finding divisors, and of his rule for extracting the root of a binomial. Also a new rule for determining the form of an assum'd infinite series. Translated from the Latin of G.I.'s Gravesande |
title_exact_search | The elements of universal mathematics, or Algebra To which is added, a specimen of a commentary on Sir Isaac Newton's universal arithmetic. Containing, demonstrations of his method of finding divisors, and of his rule for extracting the root of a binomial. Also a new rule for determining the form of an assum'd infinite series. Translated from the Latin of G.I.'s Gravesande |
title_exact_search_txtP | The elements of universal mathematics, or Algebra To which is added, a specimen of a commentary on Sir Isaac Newton's universal arithmetic. Containing, demonstrations of his method of finding divisors, and of his rule for extracting the root of a binomial. Also a new rule for determining the form of an assum'd infinite series. Translated from the Latin of G.I.'s Gravesande |
title_full | The elements of universal mathematics, or Algebra To which is added, a specimen of a commentary on Sir Isaac Newton's universal arithmetic. Containing, demonstrations of his method of finding divisors, and of his rule for extracting the root of a binomial. Also a new rule for determining the form of an assum'd infinite series. Translated from the Latin of G.I.'s Gravesande |
title_fullStr | The elements of universal mathematics, or Algebra To which is added, a specimen of a commentary on Sir Isaac Newton's universal arithmetic. Containing, demonstrations of his method of finding divisors, and of his rule for extracting the root of a binomial. Also a new rule for determining the form of an assum'd infinite series. Translated from the Latin of G.I.'s Gravesande |
title_full_unstemmed | The elements of universal mathematics, or Algebra To which is added, a specimen of a commentary on Sir Isaac Newton's universal arithmetic. Containing, demonstrations of his method of finding divisors, and of his rule for extracting the root of a binomial. Also a new rule for determining the form of an assum'd infinite series. Translated from the Latin of G.I.'s Gravesande |
title_short | The elements of universal mathematics, or Algebra |
title_sort | the elements of universal mathematics or algebra to which is added a specimen of a commentary on sir isaac newton s universal arithmetic containing demonstrations of his method of finding divisors and of his rule for extracting the root of a binomial also a new rule for determining the form of an assum d infinite series translated from the latin of g i s gravesande |
title_sub | To which is added, a specimen of a commentary on Sir Isaac Newton's universal arithmetic. Containing, demonstrations of his method of finding divisors, and of his rule for extracting the root of a binomial. Also a new rule for determining the form of an assum'd infinite series. Translated from the Latin of G.I.'s Gravesande |
url | http://nl.sub.uni-goettingen.de/id/1700900400?origin=/collection/nlh-ecc |
work_keys_str_mv | AT gravesandewillemjacobs matheseosuniversaliselementaengl AT gravesandewillemjacobs theelementsofuniversalmathematicsoralgebratowhichisaddedaspecimenofacommentaryonsirisaacnewtonsuniversalarithmeticcontainingdemonstrationsofhismethodoffindingdivisorsandofhisruleforextractingtherootofabinomialalsoanewrulefordeterminingtheformofanassumdinf |