Multiphase reactors: reaction engineering concepts, selection, and industrial applications
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
[2023]
|
Schriftenreihe: | De Gruyter graduate
|
Schlagworte: | |
Online-Zugang: | https://www.degruyter.com/isbn/9783110713763 Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XIX, 320 Seiten Illustrationen, Diagramme |
ISBN: | 9783110713763 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049107590 | ||
003 | DE-604 | ||
005 | 20240813 | ||
007 | t | ||
008 | 230821s2023 gw a||| |||| 00||| eng d | ||
015 | |a 23,N04 |2 dnb | ||
015 | |a 23,A29 |2 dnb | ||
016 | 7 | |a 1278594914 |2 DE-101 | |
020 | |a 9783110713763 |c pbk. |9 978-3-11-071376-3 | ||
035 | |a (OCoLC)1390740500 | ||
035 | |a (DE-599)DNB1278594914 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-11 | ||
082 | 0 | 4 | |a 660.2832 |2 23/ger |
084 | |a VN 7320 |0 (DE-625)147617:253 |2 rvk | ||
084 | |a VN 7300 |0 (DE-625)147616:253 |2 rvk | ||
100 | 1 | |a Harmsen, Jan |e Verfasser |0 (DE-588)1295223376 |4 aut | |
245 | 1 | 0 | |a Multiphase reactors |b reaction engineering concepts, selection, and industrial applications |c Jan Harmsen, René Bos |
264 | 1 | |a Berlin |b De Gruyter |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a XIX, 320 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a De Gruyter graduate | |
650 | 0 | 7 | |a Mehrphasenreaktor |0 (DE-588)4125884-8 |2 gnd |9 rswk-swf |
653 | |a Chemieingeniurwesen | ||
653 | |a Chemische Technik | ||
653 | |a Verfahrenstechnik | ||
653 | |a Chemical Reaction Engineering | ||
653 | |a Three-Phase Reactors | ||
653 | |a Reactor Selection | ||
653 | |a Scale-up | ||
653 | |a Residence-Time Distribution | ||
653 | |a Mass Transfer | ||
653 | |a Heat Transfer | ||
653 | |a Chemical Technology | ||
653 | |a Chemical Engineering | ||
653 | |a Process Engineering | ||
653 | |a TB: Textbook | ||
653 | |a Chemical Reaction Engineering;Three-Phase Reactors;Reactor Selection;Scale-up;Residence-Time Distribution;Mass Transfer;Heat Transfer;Chemical Technology;Chemical Engineering;Process Engineering; | ||
689 | 0 | 0 | |a Mehrphasenreaktor |0 (DE-588)4125884-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Bos, René |e Verfasser |0 (DE-588)1295223627 |4 aut | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-071377-0 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-071384-8 |
856 | 4 | 2 | |m X:MVB |u https://www.degruyter.com/isbn/9783110713763 |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1278594914/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034368974&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034368974 |
Datensatz im Suchindex
_version_ | 1807319458306326528 |
---|---|
adam_text |
CONTENTS
PREFACE
-
XV
ABOUT
THE
AUTHORS
-
XXI
PART
A:
MULTIPHASE
REACTORS:
CHEMICAL
REACTION
ENGINEERING
1
1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.5
1.6
1.7
INTRODUCTION
-
3
BOOK
INTRODUCTION
-
3
A
REACTION
ENGINEER
MEETS
AN
ELECTRONIC
ENGINEER
-
5
LEVENSPIEL
'
S
GENIUS
PROBLEM
1.1
-
5
A
SHORT
HISTORY
OF
CHEMICAL
REACTION
ENGINEERING
-
10
INTRODUCTION
-
10
BIRTH
OF
CHEMICAL
REACTION
ENGINEERING
-
10
FOUNDING
FATHERS
OF
CRE
-
12
CRE
AS
A
LANGUAGE
GAME
-
13
DIMENSIONLESS
NUMBERS
IN
CRE:
THE
PERSONS
BEHIND
THE
NUMBER
-
13
REACTION
ENGINEERING
AS
INTRODUCTION
TO
PROCESS
DESIGN
-
17
EXERCISES
----
17
TAKEAWAY
LEARNING
POINTS
-
18
REFERENCES
-
18
2
2.1
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.4
2.4.1
2.4.2
2.5
2.5.1
2.5.2
OVERVIEW
OF
MULTIPHASE
REACTORS
-
20
INTRODUCTION
-
20
TWO-PHASE
G-S
REACTORS
-
22
FIXED
BED
REACTORS
-
22
GAS-SOLID
FLUID
BED
REACTORS
-
24
TWO-PHASE
G-L
AND
L-L
REACTORS
----
31
GAS-LIQUID
BUBBLE
COLUMN
REACTORS
-
31
CONTINUOUS
AND
BATCHWISE
OPERATION
-
33
MECHANICALLY
STIRRED
GAS-LIQUID
REACTORS
-
34
GAS-LIQUID
SPRAY
TOWER
REACTOR
AND
VENTURI
WASHER
-
35
GAS-LIQUID
PACKED
BED
REACTOR
-
37
TWO-PHASE
L-L
REACTORS
-
38
THREE-PHASE
GAS-LIQUID-SOLID
REACTORS
-
40
SLURRY
REACTORS
(LIQUID
IS
CONTINUOUS
PHASE)
-
40
TRICKLE-BED
THREE-PHASE
REACTOR
WITH
GAS
AS
THE
CONTINUOUS
PHASE
-
41
REACTORS
WITH
HEAT
CONTROL
-
43
INTRODUCTION
OF
REACTORS
WITH
HEAT
CONTROL
-
43
ADIABATIC
HEAT
CONTROL
-
44
VI
-
CONTENTS
2.5.3
2.5.4
2.5.5
2.5.6
2.5.7
2.5.8
2.6
2.6.1
MULTITUBULAR
FIXED
BED
REACTOR
-
44
WALL
(JACKET)
HEAT
EXCHANGE
-
45
HEAT
TRANSFER
BY
EVAPORATION
AND
A
CONDENSER
-
45
HEAT
TRANSFER
BY
COILS
INSIDE
THE
REACTOR
-
45
MICROWAVES
HEATING
-----45
ELECTRICAL
HEATING
----
45
EXERCISES
----
46
INDUSTRIAL
EXERCISE
1:
REACTOR
TYPES
FOR
PVC
DEPOLYMERIZATION
START-UP
COMPANY
----
46
2.6.2
INDUSTRIAL
EXERCISE
2:
REACTOR
TYPE
OPTIONS
FOR
PRECIPITATION
REACTION
----
46
2.7
TAKEAWAY
LEARNING
POINTS
-
47
REFERENCES
----
47
PART
B:
FUNDAMENTALS
3
SCALE-INDEPENDENT
BASICS
RELEVANT
FOR
ALL
REACTORS
-
51
3.1
REACTION
STOICHIOMETRY
AND
KINETICS
-
51
3.1.1
INTRODUCTION
-----
51
3.1.2
REACTION
STOICHIOMETRY
-
51
3.1.3
DEFINITION
OF
REACTION
RATE
AND
KINETICS
-
53
3.1.4
REACTION
RATE
EQUATIONS
-----
55
3.1.5
EXPERIMENTAL
KINETICS
DETERMINATION
-
59
3.2
REACTOR
PERFORMANCE
DEFINITIONS
-
60
3.2.1
PROCESS
AND
REACTOR
BOUNDARIES
-
60
3.2.2
REACTOR
CONVERSION
-
61
3.2.3
INTEGRAL
VERSUS
DIFFERENTIAL
REACTOR
SELECTIVITY
-
62
3.2.4
REACTOR
PRODUCTION
CAPACITY
-
64
3.2.5
PROCESS
CONVERSION
AND
YIELD
-
64
3.2.6
DEFINITIONS
OF
TERMS:
SPACE
VELOCITY,
GHSV,
WHSV,
LHSV
----
65
3.2.7
RESIDENCE
TIME
AND
SPACE
TIME
-
67
3.2.8
LIMITING
REACTANT
------
67
3.3
PHYSICAL
PROPERTIES
-
68
3.3.1
REACTION
MEDIUM
DENSITY
MODELING
-
68
3.3.2
PHYSICAL
TRANSPORT
PROPERTIES
-
69
3.4
REACTION
ENTHALPY
------
69
3.5
REACTION
RUNAWAY
BEHAVIOR
-
70
3.5.1
EXAMPLE
FROM
JAN
'
S
EXPERIENCE
-
71
CONTENTS
-
-
VII
3.6
3.7
EXERCISES
-
72
TAKEAWAY
LEARNING
POINTS
-
73
REFERENCES
-
73
LIST
OF
SYMBOLS
-
74
4
4.1
4.2
4.3
4.4
4.4.1
4.4.2
4.5
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.8
4.8.1
4.8.2
4.8.3
RESIDENCE
TIME
DISTRIBUTION
AND
MIXING
THEORY
-
75
RESIDENCE
TIME
DISTRIBUTION
THEORY
-
75
THE
PLUG
FLOW
REACTOR
CONCEPT:
PFR
-
78
THE
PERFECTLY
BACKMIXED
REACTOR:
CSTR
OR
CISTR
-
79
INTERMEDIATE
MACROMIXING
-
81
TANKS-IN-SERIES
CONCEPT
-
81
AXIAL
DISPERSION
CONCEPT
-
82
RESIDENCE
TIME
DISTRIBUTION
EFFECTS
ON
CONVERSION/SELECTIVITY
-
84
MICROMIXING,
EARLINESS
OF
MIXING
AND
SEGREGATION
-
88
EARLINESS
OF
MIXING
-
89
DEGREE
OF
SEGREGATION
-
91
TAKEAWAY
MESSAGES:
MACRO
AND
MICROMIXING
-
93
APPLICATION
OF
RTD
THEORY
TO
IDEAL
REACTOR
TYPE
SELECTION
-
94
RTD
OF
REAL
REACTORS
-
94
RTD
OF
TWO
AND
THREE-PHASE
FIXED
BED
REACTORS
-
94
RESIDENCE
TIME
DISTRIBUTION
G-L
BUBBLE
COLUMNS
-
98
BUBBLING
FLUID
BED
RESIDENCE
TIME
DISTRIBUTIONS
-
100
RESIDENCE
TIME
DISTRIBUTION
G-L-S
BUBBLE
COLUMNS
AND
FLUID
BEDS
-
101
EXERCISES
-
102
INDUSTRIAL
EXERCISE
1:
RTD
OF
A
NEW
REACTOR
FOR
A
NEW
PROCESS
-
102
INDUSTRIAL
EXERCISE
2:
FRESH
COCONUT
DRYING
IN
A
FLUID
BED
-
103
INDUSTRIAL
EXERCISE
3:
CATALYST
DEACTIVATION
IN
A
THREE-PHASE
SLURRY
REACTOR
-
105
4.9
TAKEAWAY
LEARNING
POINTS
-
107
REFERENCES
-
107
5
5.1
5.1.1
INTER
AND
INTRAPHASE
MASS
AND
HEAT
TRANSFER
-
109
INTRODUCTION
TO
MASS
TRANSFER
-
109
MASS
TRANSFER
FROM
GAS
PHASE
TO
LIQUID
PHASE
TO
POROUS
SOLID
PHASE
-
110
5.2
5.3
5.3.1
5.4
5.4.1
5.4.2
5.5
CONCEPT
OF
TRANSFER
COEFFICIENTS
-
110
MULTIPHASE
MASS
AND
HEAT
TRANSFER:
INTER
AND
INTRAPHASE
EFFECTS
-
112
EXERCISE:
MASS
TRANSFER
IN
SERIES
AND/OR
IN
PARALLEL
-
112
MASS
TRANSFER
WITH
REACTION
IN
GAS-LIQUID
REACTORS
-
113
INTRODUCTION
-
113
CHEMICAL
ENHANCEMENT
AND
THE
HATTA
NUMBER
-
113
MASS
TRANSFER
IN
HETEROGENEOUS
CATALYSIS
-
116
VIII
-
CONTENTS
5.5.1
5.5.2
5.5.3
5.5.4
INTRODUCTION
----
116
DIFFUSION
IN
POROUS
CATALYSTS
-
118
CONSEQUENCES
FOR
CATALYST
PERFORMANCE
-
120
EFFECT
ON
CATALYST
ACTIVITY:
THIELE
MODULUS
AND
THE
CONCEPT
OF
EFFECTIVENESS
FACTOR
-
120
5.5.5
5.5.6
5.5.7
5.5.8
5.5.9
5.6
5.6.1
EFFECT
ON
APPARENT
REACTION
ORDERS
-
126
EFFECT
ON
APPARENT
ACTIVATION
ENERGY
-
127
EFFECT
OF
PARTICLE
SIZE
AND
FLUID
VELOCITY
-
129
PORE
DIFFUSION
AND
CATALYST
DESIGN
IN
TERMS
OF
SIZE
AND
SHAPES
-
130
EXAMPLE:
THE
PERIODIC
TABLE
OF
THE
TRILOBES
-
131
EXERCISES----
134
INDUSTRIAL
EXERCISE
1:
CATALYST
PARTICLE
SIZE
AND
SHAPE
FOR
THE
DEHYDRATION
OF
MPC
-
134
5.6.2
INDUSTRIAL
EXERCISE
2:
DIFFUSION
AND
DEACTIVATION
FOR
BIMODAL
PORE
SIZE
DISTRIBUTION
----
135
5.7
TAKEAWAY
LEARNING
POINTS
-
138
REFERENCES
-
138
6
6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
QUANTIFICATION
OF
MASS
TRANSFER
IN
G-L(-S)
REACTORS
-
140
INTRODUCTION
-
140
MASS
TRANSFER
COEFFICIENTS
AND
SHERWOOD
NUMBERS
-
141
QUANTIFIED
MASS
TRANSFER
TWO
AND
THREE-PHASE
BUBBLE
COLUMNS
-
142
GAS-LIQUID
MASS
TRANSFER
IN
HORIZONTAL
BUBBLE
COLUMNS
-
143
LIQUID-SOLID
MASS
TRANSFER
IN
THREE-PHASE
BUBBLE
COLUMNS
----
144
SHEAR
RATE
DISTRIBUTION
COMMERCIAL
SCALE
ON
BUBBLES
AND
DROPLET
SIZE
DISTRIBUTION
-
144
6.3.4
6.4
6.5
6.5.1
6.5.2
6.6
6.7
PARTICLE
(CATALYST)
BREAKAGE
AND
ATTRITION
-
145
G-L-S
MASS
TRANSFER
IN
TRICKLE-BED
REACTORS
-
145
PROCESS
INTENSIFICATION
METHODS
FOR
INTERFACE
TRANSFER
-
147
ROTATING
REACTORS
-
147
OTHER
PROCESS
INTENSIFIED
REACTORS
----
148
EXERCISES
-
148
TAKEAWAY
LEARNING
POINTS
-
149
REFERENCES
-
149
7
7.1
7.2
7.2.1
7.2.2
7.2.3
HEAT
MANAGEMENT
-
151
INTRODUCTION
----
151
THEORY
NONISOTHERMAL
BEHAVIOR
REACTORS
-
151
NONISOTHERMAL
BACKMIXED
REACTOR
-
153
NONISOTHERMAL
TUBULAR
REACTOR
-
156
REACTOR
DESIGN
TO
AVOID
TEMPERATURE
RUNAWAY
-
157
CONTENTS
-
IX
7.2.4
QUANTIFIED
HEAT
TRANSFER
FOR
TWO
AND
THREE-PHASE
SLURRY
AND
FLUID
BED
REACTORS
-
161
7.2.5
7.3
7.4
7.5
MECHANICALLY
STIRRED
REACTOR
HEAT
TRANSFER
-
164
REACTOR
OPERATION
AND
DYNAMIC
BEHAVIOR
-
164
EXERCISES
-
166
TAKEAWAY
LEARNING
POINTS
-
166
REFERENCES
-
166
8
8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.4
8.4.1
8.4.2
8.5
8.5.1
8.5.2
8.5.3
MULTIPHASE
REACTOR
MODELING
-
168
INTRODUCTION
-
168
MODELS
FOR
AND
TWO
AND
THREE-PHASE
FIXED
BED
REACTORS
-
170
ADIABATIC
VERSUS
NONADIABATIC
-
170
PSEUDO-HOMOGENEOUS
MODELS
-
171
HETEROGENEOUS
MODELS
-
174
CFD
MODELS
----
175
MODELS
FOR
TRICKLE-BED
REACTORS
-
176
CO-CURRENT
TRICKLE-BED
-
176
ADIABATIC
TRICKLE-BED
-
176
MULTITUBULAR
HEAT
EXCHANGE
TRICKLE-BED
-
176
COUNTERCURRENT
TRICKLE-BED
FLOW
-
176
MODELS
FOR
BUBBLE
COLUMNS
-
177
MODELS
FOR
G/L
BUBBLE
COLUMNS
-
177
CFD
MODELS
FOR
G/L/S
(SLURRY)
BUBBLE
COLUMNS
----
177
MODELS
FOR
FLUID
BEDS
-
178
MODELS
FOR
G/S
FLUID
BEDS
-
178
CFD
MODELS
FOR
L/S
FLUID
BEDS
----
178
CFD
MODELS
FOR
THREE-PHASE
MECHANICALLY
STIRRED
FED-BATCH
REACTORS
-
178
8.6
8.6.1
8.7
EXERCISES
----
179
INDUSTRIAL
EXERCISE
1:
TRICKLE-BED
REACTOR
-
179
TAKEAWAY
LEARNING
POINTS
-
179
REFERENCES
-
180
PART
C:
STAGE-GATE
INNOVATION
METHODS
9
9.1
9.2
9.2.1
9.2.2
9.2.3
STAGE-GATE
INNOVATION
METHODS
-
183
INTRODUCTION
----
183
INNOVATION
STAGES
OVERVIEW
-
184
DISCOVERY
STAGE
-
184
CONCEPT
STAGE
-
184
FEASIBILITY
STAGE
-
184
X
-
-
CONTENTS
9.2.4
9.2.5
9.2.6
9.2.7
9.3
DEVELOPMENT
STAGE
----
185
ENGINEERING
PROCUREMENT
CONSTRUCTION
STAGE
-
185
OPERATION
STAGE
----
185
ABANDON
STAGE
-
185
TAKEAWAY
LEARNING
POINTS
----
185
REFERENCES
-
186
10
10.1
10.2
10.2.1
10.2.2
10.3
MULTIPHASE
REACTOR
SELECTION
-
187
INTRODUCTION
----
187
CRITICAL
REVIEW
SOME
ACADEMIC
METHODS
REACTOR
SELECTION
-
187
REACTOR
FAMILY
TREE
SELECTION
----
187
THREE-LEVEL
MULTIPHASE
REACTOR
SELECTION
METHOD
----
188
REACTOR
SELECTION
METHOD
WHEN
SCALE-UP
RISK
IS
LOW
FOR
REACTOR
TYPES
CONSIDERED
-
189
10.4
10.4.1
10.4.2
10.4.3
INTRODUCTION
TO
INDUSTRIAL
REACTOR
SELECTION
AND
ITS
PRACTICE
-
189
INTRODUCTION
-
189
IDEATION
STAGE
REACTOR
TYPE
SELECTION
-
192
THE
POWER
OF
REACTOR
SELECTION
IN
THE
IDEATION
STAGE:
SHELL
SHALE
FLUID
BED
CASE
-
193
10.5
10.5.1
10.5.2
10.5.3
REACTOR
TYPE
SELECTION
IN
THE
VARIOUS
INNOVATION
STAGES
-
195
CONCEPT
PHASE
REACTOR
SELECTION
-
195
FEASIBILITY
STAGE
REACTOR
SELECTION
-
198
DEVELOPMENT
STAGE
FRONT-END
ENGINEERING
DESIGN
REACTOR
SELECTION
-
202
10.5.4
ENGINEERING
PROCUREMENT
CONSTRUCTION
(EPC)
STAGE
REACTOR
SELECTION
-
202
10.6
10.6.1
10.6.2
10.6.3
10.7
EXERCISES
-
203
INDUSTRIAL
EXERCISE
1:
REACTOR
TYPE
SELECTION
IN
IDEATION
STAGE
-
203
INDUSTRIAL
EXERCISE
2:
REACTOR
SELECTION
CONCEPT
STAGE
-
203
INDUSTRIAL
EXERCISE
3:
REACTOR
FAMILY-TYPE
SELECTION
IDEATION
STAGE
----
204
TAKEAWAY
LEARNING
POINTS
-
205
REFERENCES
-
205
11
11.1
11.2
NEW
REACTION
SYSTEMS
THROUGH
ALL
INNOVATION
STAGES
-
206
INTRODUCTION
----
206
IDEATION
STAGE
(ALSO
CALLED
DISCOVERY
STAGE,
OR
EARLY
RESEARCH
STAGE)
-
206
11.2.1
11.2.2
11.2.3
11.3
11.3.1
IDEATION
STAGE
DESIGN
-
206
IDEATION
STAGE
MODELING
-
207
IDEATION
STAGE
PROOF
OF
PRINCIPLE
EXPERIMENTS
-
207
CONCEPT
STAGE
(ALSO
CALLED
RESEARCH
STAGE)
-
207
CONCEPT
DESIGN
-
207
CONTENTS
-
XI
11.3.2
11.3.3
11.4
CONCEPT
MODELING
-
211
EXPERIMENTAL
VALIDATION
----
211
FEASIBILITY
STAGE
DESIGN
(ALSO
CALLED
FIRST
PART
OF
DEVELOPMENT
STAGE)
----
212
11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.5
11.5.1
11.5.2
11.5.3
11.6
INTRODUCTION
----
212
REACTOR
DEVELOPMENT
PLAN
OVERVIEW
-
212
CRITICAL
PERFORMANCE
FACTORS
FOR
COMMERCIAL-SCALE
REACTORS
-
213
REACTOR
SCALE-UP
METHODS
AND
APPLICATIONS
-
216
COLD
FLOW
TEST
RIGS
----
223
DEVELOPMENT
STAGE
----
224
INTRODUCTION
----
224
PILOT
PLANT
AND
TEST
PROGRAM
EXECUTION
-
224
FRONT-END
ENGINEERING
DESIGN
-
224
ENGINEERING,
PROCUREMENT,
AND
CONSTRUCTION
(EPC)
STAGE
(ALSO
CALLED
EXECUTION
STAGE)
-
226
11.6.1
11.6.2
11.6.3
11.7
11.8
11.8.1
11.9
CONTRACTOR
CHOICE
AND
CO-OPERATION
-
226
REACTOR
PROCUREMENT
AND
CONSTRUCTION
-
227
COMMISSIONING
----
227
START-UP
AND
NORMAL
OPERATION
(ALSO
CALLED
DEMONSTRATION
STAGE)
-
227
EXERCISES----
228
INDUSTRIAL
EXERCISE:
GLUCOSE
TO
ETHYLENE
GLYCOL
-
228
TAKEAWAY
LEARNING
POINTS
-
229
REFERENCES
-
230
PART
D:
EDUCATION
12
12.1
12.2
12.2.1
12.2.2
12.2.3
12.3
12.4
12.5
12.5.1
EDUCATION
GUIDELINES
-
235
INTRODUCTION
----
235
CHALLENGES
IN
CHEMICAL
REACTION
ENGINEERING
EDUCATION
-
235
FROM
JAN
'
S
RECOLLECTION
----
235
FROM
RENE
'
S
RECOLLECTION
-
238
CRE
AS
A
LANGUAGE
GAME
LINKED
TO
TEACHING
-
238
GUIDELINES
TO
USE
THIS
BOOK
IN
ACADEMIC
EDUCATION
-
239
GUIDELINES
TO
USE
THIS
BOOK
IN
INDUSTRY
-
240
EDUCATION
OPTIONS
FOR
INDUSTRY
PRACTITIONERS
-
240
LEARNING
COURSE:
INDUSTRIAL
CHEMICAL
REACTION
ENGINEERING
AND
PROCESS
CONCEPT
DESIGN
FOR
NONCHEMICAL
ENGINEERS
-
240
12.5.2
HANDS-ON
COURSE:
INDUSTRIAL
REACTION
ENGINEERING
AND
CONCEPTUAL
PROCESS
DESIGN
-
241
12.5.3
COURSE
PROGRAM
-
241
XII
-
CONTENTS
12.6
POSITION
OF
REACTION
ENGINEERING
IN
CHEMICAL
ENGINEERING
CURRICULUM
----
244
12.7
TAKEAWAY
LEARNING
POINTS
-----244
REFERENCES
-
245
13
13.1
13.2
13.2.1
13.2.2
13.2.3
13.2.4
13.3
13.3.1
13.3.2
13.3.3
13.3.4
13.3.5
13.3.6
13.3.7
13.4
13.4.1
13.4.2
13.4.3
13.4.4
13.5
INDUSTRIAL
CASES
-
246
INTRODUCTION
----
246
GAS-TO-LIQUID
(GTL)
SHELL
CASE
----
246
INTRODUCTION
TO
GTL
CASE
-
246
A
CONSECUTIVE
OR
A
PARALLEL
REACTION?
----
247
FLORY-SCHULZ
DISTRIBUTIONS
-----248
WHY
SHELL
EXPERTS
"
LIKE
"
FIXED
BED
REACTORS
FOR
GTL?
-
250
ETHYL
BENZENE
PEROXIDATION
REACTOR
(EBHP)
-
254
INTRODUCTION
TO
THE
CASE
-
254
REACTION
DESCRIPTION
-
255
THE
LIQUID-PHASE
RTD
EXPERIMENTS
-
256
RESULTS
OF
THE
LIQUID-PHASE
RTD
EXPERIMENTS
-
257
RESULTS
OF
THE
GAS
PHASE
RTD
EXPERIMENTS
-
259
COMMERCIAL
PLANT
IMPROVEMENTS
-
263
TAKEAWAY
LEARNING
POINTS
-
264
A
NEW
CATALYST
SHAPE:
PRESSURE
DROP
AND
PACKING
DENSITY
-
265
INTRODUCTION
-----265
INITIAL
EVALUATION
-
266
EXPERIMENTAL
RESULTS
-
267
TAKEAWAY
LEARNING
POINTS
-----267
HEAVY
RESIDUE
OIL
UPGRADING:
REACTOR
TYPE
SELECTIONS
AND
DEVELOPMENT
-
268
13.5.1
13.5.2
13.5.3
HEAVY
RESIDUE
UPGRADING
INTRODUCTION
----
268
HEAVY
RESIDUE
UPGRADING
REACTION
CHEMISTRY
-
269
SHELL
BUNKER
FLOW
SELECTION
AND
THE
DEVELOPMENT
TO
COMMERCIAL
SCALE
-
270
13.5.4
LC-FININGYY
RESIDUE
HYDROCRACKING
IN
THREE-PHASE
SLURRY-EBULLATED-BED
REACTOR
-
274
13.5.5
13.5.6
13.5.7
13.5.8
13.6
13.7
13.7.1
13.7.2
13.8
HEAVY
OIL
UPGRADING
BY
COKING
WITH
EXXON
FLEXICOKER
FLUID
BED
-
275
REACTOR
TYPE
COMPARISON
-
HEAVY
PETROLEUM
UPGRADE
-
275
EXERCISES----
276
TAKEAWAY
LEARNING
POINTS
-
276
REACTOR
STABILITY
IN
AN
ADIABATIC
TRICKLE-BED
REACTOR
-
277
THREE-PHASE
SLURRY-REACTIVE
DISTILLATION
-
279
INTRODUCTION
----
279
TAKEAWAY
LEARNING
POINTS
-
280
FLUID
BED
RETORTING
SHALE
OIL
-----280
CONTENTS
-
XIII
13.8.1
13.8.2
13.8.3
13.8.4
13.8.5
13.8.6
13.8.7
PROJECT
STARTING
POINTS
-
280
REACTION
KINETICS,
REACTORS,
AND
PROCESS
CONCEPT
SELECTIONS
-
281
SHALE
CHARACTERISTICS
-
282
PROCESS
CONCEPT
-
282
PROCESS
CONDITIONS
-
282
PROCESS
RESEARCH
ITEMS
-
283
TAKEAWAY
LEARNING
POINTS
-
285
REFERENCES:
FLUID
BED
RETORTING
OF
SHALE
-
286
INDEX
-
321
14
14.1
14.2
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6
14.3.7
14.3.8
14.3.9
14.4
14.4.1
14.4.2
14.5
14.5.1
14.5.2
14.5.3
14.5.4
14.6
14.7
14.7.1
EDUCATION
CASE
STUDY:
POLYOLEFIN
CRE
AND
SCALE-UP
-
287
INTRODUCTION
----
287
DISCOVERY-STAGE
REACTOR
FAMILY
SELECTION
-
287
CONCEPT
STAGE
-
288
SCALE-INDEPENDENT
BASICS
----
288
CHEMISTRY
AND
STOICHIOMETRY
OF
THE
REACTION
-
288
HEAT
OF
REACTIONS
-
291
PHYSICAL
PROPERTIES
-
292
REACTION
ENGINEERING
CONCEPT
DESIGN
-
292
SOLID-PHASE
RESIDENCE
TIME
DISTRIBUTION
-
293
MASS
TRANSFER
LIMITATIONS
AND
CONCEPT
DESIGN
CHOICES
-
295
HEAT
TRANSFER
LIMITATIONS
AND
CONCEPT
DESIGN
-
297
MODELING
FOR
REACTOR
SIZING
-----303
FEASIBILITY
STAGE
-
304
INTRODUCTION
----
304
COMMERCIAL-SCALE
DESIGN
IN
FEASIBILITY
STAGE
-
304
DEVELOPMENT
STAGE
-
310
PILOT
PLANT
DESIGN
-
310
ECONOMICS
COMMERCIAL
SCALE,
PILOT
PLANT
AND
MOCK-UP
MODEL
-
313
RISKS
AND
VALUE
OF
INFORMATION
ASSESSMENT
-
313
DEVELOPMENT:
FRONT-END
ENGINEERING
DESIGN
-
315
COMMERCIAL-SCALE
IMPLEMENTATION
(EPC
AND
START-UP)
-
315
EXERCISES
----
315
EXERCISE
1:
THIELE
MODULUS
DESCRIPTION
AND
CALCULATION
FOR
POLYOLEFIN
CATALYST
----
315
14.7.2
14.7.3
14.8
14.9
EXERCISE
2:
TEMPERATURE
CATALYST
PARTICLE
-
316
EXERCISE
3:
POLYETHYLENE
REACTOR
DESIGN
-
316
TAKEAWAY
LEARNING
POINTS
-
316
LIST
OF
SYMBOLS
----
318
REFERENCES
-
318 |
adam_txt |
CONTENTS
PREFACE
-
XV
ABOUT
THE
AUTHORS
-
XXI
PART
A:
MULTIPHASE
REACTORS:
CHEMICAL
REACTION
ENGINEERING
1
1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.5
1.6
1.7
INTRODUCTION
-
3
BOOK
INTRODUCTION
-
3
A
REACTION
ENGINEER
MEETS
AN
ELECTRONIC
ENGINEER
-
5
LEVENSPIEL
'
S
GENIUS
PROBLEM
1.1
-
5
A
SHORT
HISTORY
OF
CHEMICAL
REACTION
ENGINEERING
-
10
INTRODUCTION
-
10
BIRTH
OF
CHEMICAL
REACTION
ENGINEERING
-
10
FOUNDING
FATHERS
OF
CRE
-
12
CRE
AS
A
LANGUAGE
GAME
-
13
DIMENSIONLESS
NUMBERS
IN
CRE:
THE
PERSONS
BEHIND
THE
NUMBER
-
13
REACTION
ENGINEERING
AS
INTRODUCTION
TO
PROCESS
DESIGN
-
17
EXERCISES
----
17
TAKEAWAY
LEARNING
POINTS
-
18
REFERENCES
-
18
2
2.1
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.4
2.4.1
2.4.2
2.5
2.5.1
2.5.2
OVERVIEW
OF
MULTIPHASE
REACTORS
-
20
INTRODUCTION
-
20
TWO-PHASE
G-S
REACTORS
-
22
FIXED
BED
REACTORS
-
22
GAS-SOLID
FLUID
BED
REACTORS
-
24
TWO-PHASE
G-L
AND
L-L
REACTORS
----
31
GAS-LIQUID
BUBBLE
COLUMN
REACTORS
-
31
CONTINUOUS
AND
BATCHWISE
OPERATION
-
33
MECHANICALLY
STIRRED
GAS-LIQUID
REACTORS
-
34
GAS-LIQUID
SPRAY
TOWER
REACTOR
AND
VENTURI
WASHER
-
35
GAS-LIQUID
PACKED
BED
REACTOR
-
37
TWO-PHASE
L-L
REACTORS
-
38
THREE-PHASE
GAS-LIQUID-SOLID
REACTORS
-
40
SLURRY
REACTORS
(LIQUID
IS
CONTINUOUS
PHASE)
-
40
TRICKLE-BED
THREE-PHASE
REACTOR
WITH
GAS
AS
THE
CONTINUOUS
PHASE
-
41
REACTORS
WITH
HEAT
CONTROL
-
43
INTRODUCTION
OF
REACTORS
WITH
HEAT
CONTROL
-
43
ADIABATIC
HEAT
CONTROL
-
44
VI
-
CONTENTS
2.5.3
2.5.4
2.5.5
2.5.6
2.5.7
2.5.8
2.6
2.6.1
MULTITUBULAR
FIXED
BED
REACTOR
-
44
WALL
(JACKET)
HEAT
EXCHANGE
-
45
HEAT
TRANSFER
BY
EVAPORATION
AND
A
CONDENSER
-
45
HEAT
TRANSFER
BY
COILS
INSIDE
THE
REACTOR
-
45
MICROWAVES
HEATING
-----45
ELECTRICAL
HEATING
----
45
EXERCISES
----
46
INDUSTRIAL
EXERCISE
1:
REACTOR
TYPES
FOR
PVC
DEPOLYMERIZATION
START-UP
COMPANY
----
46
2.6.2
INDUSTRIAL
EXERCISE
2:
REACTOR
TYPE
OPTIONS
FOR
PRECIPITATION
REACTION
----
46
2.7
TAKEAWAY
LEARNING
POINTS
-
47
REFERENCES
----
47
PART
B:
FUNDAMENTALS
3
SCALE-INDEPENDENT
BASICS
RELEVANT
FOR
ALL
REACTORS
-
51
3.1
REACTION
STOICHIOMETRY
AND
KINETICS
-
51
3.1.1
INTRODUCTION
-----
51
3.1.2
REACTION
STOICHIOMETRY
-
51
3.1.3
DEFINITION
OF
REACTION
RATE
AND
KINETICS
-
53
3.1.4
REACTION
RATE
EQUATIONS
-----
55
3.1.5
EXPERIMENTAL
KINETICS
DETERMINATION
-
59
3.2
REACTOR
PERFORMANCE
DEFINITIONS
-
60
3.2.1
PROCESS
AND
REACTOR
BOUNDARIES
-
60
3.2.2
REACTOR
CONVERSION
-
61
3.2.3
INTEGRAL
VERSUS
DIFFERENTIAL
REACTOR
SELECTIVITY
-
62
3.2.4
REACTOR
PRODUCTION
CAPACITY
-
64
3.2.5
PROCESS
CONVERSION
AND
YIELD
-
64
3.2.6
DEFINITIONS
OF
TERMS:
SPACE
VELOCITY,
GHSV,
WHSV,
LHSV
----
65
3.2.7
RESIDENCE
TIME
AND
SPACE
TIME
-
67
3.2.8
LIMITING
REACTANT
------
67
3.3
PHYSICAL
PROPERTIES
-
68
3.3.1
REACTION
MEDIUM
DENSITY
MODELING
-
68
3.3.2
PHYSICAL
TRANSPORT
PROPERTIES
-
69
3.4
REACTION
ENTHALPY
------
69
3.5
REACTION
RUNAWAY
BEHAVIOR
-
70
3.5.1
EXAMPLE
FROM
JAN
'
S
EXPERIENCE
-
71
CONTENTS
-
-
VII
3.6
3.7
EXERCISES
-
72
TAKEAWAY
LEARNING
POINTS
-
73
REFERENCES
-
73
LIST
OF
SYMBOLS
-
74
4
4.1
4.2
4.3
4.4
4.4.1
4.4.2
4.5
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.8
4.8.1
4.8.2
4.8.3
RESIDENCE
TIME
DISTRIBUTION
AND
MIXING
THEORY
-
75
RESIDENCE
TIME
DISTRIBUTION
THEORY
-
75
THE
PLUG
FLOW
REACTOR
CONCEPT:
PFR
-
78
THE
PERFECTLY
BACKMIXED
REACTOR:
CSTR
OR
CISTR
-
79
INTERMEDIATE
MACROMIXING
-
81
TANKS-IN-SERIES
CONCEPT
-
81
AXIAL
DISPERSION
CONCEPT
-
82
RESIDENCE
TIME
DISTRIBUTION
EFFECTS
ON
CONVERSION/SELECTIVITY
-
84
MICROMIXING,
EARLINESS
OF
MIXING
AND
SEGREGATION
-
88
EARLINESS
OF
MIXING
-
89
DEGREE
OF
SEGREGATION
-
91
TAKEAWAY
MESSAGES:
MACRO
AND
MICROMIXING
-
93
APPLICATION
OF
RTD
THEORY
TO
IDEAL
REACTOR
TYPE
SELECTION
-
94
RTD
OF
REAL
REACTORS
-
94
RTD
OF
TWO
AND
THREE-PHASE
FIXED
BED
REACTORS
-
94
RESIDENCE
TIME
DISTRIBUTION
G-L
BUBBLE
COLUMNS
-
98
BUBBLING
FLUID
BED
RESIDENCE
TIME
DISTRIBUTIONS
-
100
RESIDENCE
TIME
DISTRIBUTION
G-L-S
BUBBLE
COLUMNS
AND
FLUID
BEDS
-
101
EXERCISES
-
102
INDUSTRIAL
EXERCISE
1:
RTD
OF
A
NEW
REACTOR
FOR
A
NEW
PROCESS
-
102
INDUSTRIAL
EXERCISE
2:
FRESH
COCONUT
DRYING
IN
A
FLUID
BED
-
103
INDUSTRIAL
EXERCISE
3:
CATALYST
DEACTIVATION
IN
A
THREE-PHASE
SLURRY
REACTOR
-
105
4.9
TAKEAWAY
LEARNING
POINTS
-
107
REFERENCES
-
107
5
5.1
5.1.1
INTER
AND
INTRAPHASE
MASS
AND
HEAT
TRANSFER
-
109
INTRODUCTION
TO
MASS
TRANSFER
-
109
MASS
TRANSFER
FROM
GAS
PHASE
TO
LIQUID
PHASE
TO
POROUS
SOLID
PHASE
-
110
5.2
5.3
5.3.1
5.4
5.4.1
5.4.2
5.5
CONCEPT
OF
TRANSFER
COEFFICIENTS
-
110
MULTIPHASE
MASS
AND
HEAT
TRANSFER:
INTER
AND
INTRAPHASE
EFFECTS
-
112
EXERCISE:
MASS
TRANSFER
IN
SERIES
AND/OR
IN
PARALLEL
-
112
MASS
TRANSFER
WITH
REACTION
IN
GAS-LIQUID
REACTORS
-
113
INTRODUCTION
-
113
CHEMICAL
ENHANCEMENT
AND
THE
HATTA
NUMBER
-
113
MASS
TRANSFER
IN
HETEROGENEOUS
CATALYSIS
-
116
VIII
-
CONTENTS
5.5.1
5.5.2
5.5.3
5.5.4
INTRODUCTION
----
116
DIFFUSION
IN
POROUS
CATALYSTS
-
118
CONSEQUENCES
FOR
CATALYST
PERFORMANCE
-
120
EFFECT
ON
CATALYST
ACTIVITY:
THIELE
MODULUS
AND
THE
CONCEPT
OF
EFFECTIVENESS
FACTOR
-
120
5.5.5
5.5.6
5.5.7
5.5.8
5.5.9
5.6
5.6.1
EFFECT
ON
APPARENT
REACTION
ORDERS
-
126
EFFECT
ON
APPARENT
ACTIVATION
ENERGY
-
127
EFFECT
OF
PARTICLE
SIZE
AND
FLUID
VELOCITY
-
129
PORE
DIFFUSION
AND
CATALYST
DESIGN
IN
TERMS
OF
SIZE
AND
SHAPES
-
130
EXAMPLE:
THE
PERIODIC
TABLE
OF
THE
TRILOBES
-
131
EXERCISES----
134
INDUSTRIAL
EXERCISE
1:
CATALYST
PARTICLE
SIZE
AND
SHAPE
FOR
THE
DEHYDRATION
OF
MPC
-
134
5.6.2
INDUSTRIAL
EXERCISE
2:
DIFFUSION
AND
DEACTIVATION
FOR
BIMODAL
PORE
SIZE
DISTRIBUTION
----
135
5.7
TAKEAWAY
LEARNING
POINTS
-
138
REFERENCES
-
138
6
6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
QUANTIFICATION
OF
MASS
TRANSFER
IN
G-L(-S)
REACTORS
-
140
INTRODUCTION
-
140
MASS
TRANSFER
COEFFICIENTS
AND
SHERWOOD
NUMBERS
-
141
QUANTIFIED
MASS
TRANSFER
TWO
AND
THREE-PHASE
BUBBLE
COLUMNS
-
142
GAS-LIQUID
MASS
TRANSFER
IN
HORIZONTAL
BUBBLE
COLUMNS
-
143
LIQUID-SOLID
MASS
TRANSFER
IN
THREE-PHASE
BUBBLE
COLUMNS
----
144
SHEAR
RATE
DISTRIBUTION
COMMERCIAL
SCALE
ON
BUBBLES
AND
DROPLET
SIZE
DISTRIBUTION
-
144
6.3.4
6.4
6.5
6.5.1
6.5.2
6.6
6.7
PARTICLE
(CATALYST)
BREAKAGE
AND
ATTRITION
-
145
G-L-S
MASS
TRANSFER
IN
TRICKLE-BED
REACTORS
-
145
PROCESS
INTENSIFICATION
METHODS
FOR
INTERFACE
TRANSFER
-
147
ROTATING
REACTORS
-
147
OTHER
PROCESS
INTENSIFIED
REACTORS
----
148
EXERCISES
-
148
TAKEAWAY
LEARNING
POINTS
-
149
REFERENCES
-
149
7
7.1
7.2
7.2.1
7.2.2
7.2.3
HEAT
MANAGEMENT
-
151
INTRODUCTION
----
151
THEORY
NONISOTHERMAL
BEHAVIOR
REACTORS
-
151
NONISOTHERMAL
BACKMIXED
REACTOR
-
153
NONISOTHERMAL
TUBULAR
REACTOR
-
156
REACTOR
DESIGN
TO
AVOID
TEMPERATURE
RUNAWAY
-
157
CONTENTS
-
IX
7.2.4
QUANTIFIED
HEAT
TRANSFER
FOR
TWO
AND
THREE-PHASE
SLURRY
AND
FLUID
BED
REACTORS
-
161
7.2.5
7.3
7.4
7.5
MECHANICALLY
STIRRED
REACTOR
HEAT
TRANSFER
-
164
REACTOR
OPERATION
AND
DYNAMIC
BEHAVIOR
-
164
EXERCISES
-
166
TAKEAWAY
LEARNING
POINTS
-
166
REFERENCES
-
166
8
8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.4
8.4.1
8.4.2
8.5
8.5.1
8.5.2
8.5.3
MULTIPHASE
REACTOR
MODELING
-
168
INTRODUCTION
-
168
MODELS
FOR
AND
TWO
AND
THREE-PHASE
FIXED
BED
REACTORS
-
170
ADIABATIC
VERSUS
NONADIABATIC
-
170
PSEUDO-HOMOGENEOUS
MODELS
-
171
HETEROGENEOUS
MODELS
-
174
CFD
MODELS
----
175
MODELS
FOR
TRICKLE-BED
REACTORS
-
176
CO-CURRENT
TRICKLE-BED
-
176
ADIABATIC
TRICKLE-BED
-
176
MULTITUBULAR
HEAT
EXCHANGE
TRICKLE-BED
-
176
COUNTERCURRENT
TRICKLE-BED
FLOW
-
176
MODELS
FOR
BUBBLE
COLUMNS
-
177
MODELS
FOR
G/L
BUBBLE
COLUMNS
-
177
CFD
MODELS
FOR
G/L/S
(SLURRY)
BUBBLE
COLUMNS
----
177
MODELS
FOR
FLUID
BEDS
-
178
MODELS
FOR
G/S
FLUID
BEDS
-
178
CFD
MODELS
FOR
L/S
FLUID
BEDS
----
178
CFD
MODELS
FOR
THREE-PHASE
MECHANICALLY
STIRRED
FED-BATCH
REACTORS
-
178
8.6
8.6.1
8.7
EXERCISES
----
179
INDUSTRIAL
EXERCISE
1:
TRICKLE-BED
REACTOR
-
179
TAKEAWAY
LEARNING
POINTS
-
179
REFERENCES
-
180
PART
C:
STAGE-GATE
INNOVATION
METHODS
9
9.1
9.2
9.2.1
9.2.2
9.2.3
STAGE-GATE
INNOVATION
METHODS
-
183
INTRODUCTION
----
183
INNOVATION
STAGES
OVERVIEW
-
184
DISCOVERY
STAGE
-
184
CONCEPT
STAGE
-
184
FEASIBILITY
STAGE
-
184
X
-
-
CONTENTS
9.2.4
9.2.5
9.2.6
9.2.7
9.3
DEVELOPMENT
STAGE
----
185
ENGINEERING
PROCUREMENT
CONSTRUCTION
STAGE
-
185
OPERATION
STAGE
----
185
ABANDON
STAGE
-
185
TAKEAWAY
LEARNING
POINTS
----
185
REFERENCES
-
186
10
10.1
10.2
10.2.1
10.2.2
10.3
MULTIPHASE
REACTOR
SELECTION
-
187
INTRODUCTION
----
187
CRITICAL
REVIEW
SOME
ACADEMIC
METHODS
REACTOR
SELECTION
-
187
REACTOR
FAMILY
TREE
SELECTION
----
187
THREE-LEVEL
MULTIPHASE
REACTOR
SELECTION
METHOD
----
188
REACTOR
SELECTION
METHOD
WHEN
SCALE-UP
RISK
IS
LOW
FOR
REACTOR
TYPES
CONSIDERED
-
189
10.4
10.4.1
10.4.2
10.4.3
INTRODUCTION
TO
INDUSTRIAL
REACTOR
SELECTION
AND
ITS
PRACTICE
-
189
INTRODUCTION
-
189
IDEATION
STAGE
REACTOR
TYPE
SELECTION
-
192
THE
POWER
OF
REACTOR
SELECTION
IN
THE
IDEATION
STAGE:
SHELL
SHALE
FLUID
BED
CASE
-
193
10.5
10.5.1
10.5.2
10.5.3
REACTOR
TYPE
SELECTION
IN
THE
VARIOUS
INNOVATION
STAGES
-
195
CONCEPT
PHASE
REACTOR
SELECTION
-
195
FEASIBILITY
STAGE
REACTOR
SELECTION
-
198
DEVELOPMENT
STAGE
FRONT-END
ENGINEERING
DESIGN
REACTOR
SELECTION
-
202
10.5.4
ENGINEERING
PROCUREMENT
CONSTRUCTION
(EPC)
STAGE
REACTOR
SELECTION
-
202
10.6
10.6.1
10.6.2
10.6.3
10.7
EXERCISES
-
203
INDUSTRIAL
EXERCISE
1:
REACTOR
TYPE
SELECTION
IN
IDEATION
STAGE
-
203
INDUSTRIAL
EXERCISE
2:
REACTOR
SELECTION
CONCEPT
STAGE
-
203
INDUSTRIAL
EXERCISE
3:
REACTOR
FAMILY-TYPE
SELECTION
IDEATION
STAGE
----
204
TAKEAWAY
LEARNING
POINTS
-
205
REFERENCES
-
205
11
11.1
11.2
NEW
REACTION
SYSTEMS
THROUGH
ALL
INNOVATION
STAGES
-
206
INTRODUCTION
----
206
IDEATION
STAGE
(ALSO
CALLED
DISCOVERY
STAGE,
OR
EARLY
RESEARCH
STAGE)
-
206
11.2.1
11.2.2
11.2.3
11.3
11.3.1
IDEATION
STAGE
DESIGN
-
206
IDEATION
STAGE
MODELING
-
207
IDEATION
STAGE
PROOF
OF
PRINCIPLE
EXPERIMENTS
-
207
CONCEPT
STAGE
(ALSO
CALLED
RESEARCH
STAGE)
-
207
CONCEPT
DESIGN
-
207
CONTENTS
-
XI
11.3.2
11.3.3
11.4
CONCEPT
MODELING
-
211
EXPERIMENTAL
VALIDATION
----
211
FEASIBILITY
STAGE
DESIGN
(ALSO
CALLED
FIRST
PART
OF
DEVELOPMENT
STAGE)
----
212
11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.5
11.5.1
11.5.2
11.5.3
11.6
INTRODUCTION
----
212
REACTOR
DEVELOPMENT
PLAN
OVERVIEW
-
212
CRITICAL
PERFORMANCE
FACTORS
FOR
COMMERCIAL-SCALE
REACTORS
-
213
REACTOR
SCALE-UP
METHODS
AND
APPLICATIONS
-
216
COLD
FLOW
TEST
RIGS
----
223
DEVELOPMENT
STAGE
----
224
INTRODUCTION
----
224
PILOT
PLANT
AND
TEST
PROGRAM
EXECUTION
-
224
FRONT-END
ENGINEERING
DESIGN
-
224
ENGINEERING,
PROCUREMENT,
AND
CONSTRUCTION
(EPC)
STAGE
(ALSO
CALLED
EXECUTION
STAGE)
-
226
11.6.1
11.6.2
11.6.3
11.7
11.8
11.8.1
11.9
CONTRACTOR
CHOICE
AND
CO-OPERATION
-
226
REACTOR
PROCUREMENT
AND
CONSTRUCTION
-
227
COMMISSIONING
----
227
START-UP
AND
NORMAL
OPERATION
(ALSO
CALLED
DEMONSTRATION
STAGE)
-
227
EXERCISES----
228
INDUSTRIAL
EXERCISE:
GLUCOSE
TO
ETHYLENE
GLYCOL
-
228
TAKEAWAY
LEARNING
POINTS
-
229
REFERENCES
-
230
PART
D:
EDUCATION
12
12.1
12.2
12.2.1
12.2.2
12.2.3
12.3
12.4
12.5
12.5.1
EDUCATION
GUIDELINES
-
235
INTRODUCTION
----
235
CHALLENGES
IN
CHEMICAL
REACTION
ENGINEERING
EDUCATION
-
235
FROM
JAN
'
S
RECOLLECTION
----
235
FROM
RENE
'
S
RECOLLECTION
-
238
CRE
AS
A
LANGUAGE
GAME
LINKED
TO
TEACHING
-
238
GUIDELINES
TO
USE
THIS
BOOK
IN
ACADEMIC
EDUCATION
-
239
GUIDELINES
TO
USE
THIS
BOOK
IN
INDUSTRY
-
240
EDUCATION
OPTIONS
FOR
INDUSTRY
PRACTITIONERS
-
240
LEARNING
COURSE:
INDUSTRIAL
CHEMICAL
REACTION
ENGINEERING
AND
PROCESS
CONCEPT
DESIGN
FOR
NONCHEMICAL
ENGINEERS
-
240
12.5.2
HANDS-ON
COURSE:
INDUSTRIAL
REACTION
ENGINEERING
AND
CONCEPTUAL
PROCESS
DESIGN
-
241
12.5.3
COURSE
PROGRAM
-
241
XII
-
CONTENTS
12.6
POSITION
OF
REACTION
ENGINEERING
IN
CHEMICAL
ENGINEERING
CURRICULUM
----
244
12.7
TAKEAWAY
LEARNING
POINTS
-----244
REFERENCES
-
245
13
13.1
13.2
13.2.1
13.2.2
13.2.3
13.2.4
13.3
13.3.1
13.3.2
13.3.3
13.3.4
13.3.5
13.3.6
13.3.7
13.4
13.4.1
13.4.2
13.4.3
13.4.4
13.5
INDUSTRIAL
CASES
-
246
INTRODUCTION
----
246
GAS-TO-LIQUID
(GTL)
SHELL
CASE
----
246
INTRODUCTION
TO
GTL
CASE
-
246
A
CONSECUTIVE
OR
A
PARALLEL
REACTION?
----
247
FLORY-SCHULZ
DISTRIBUTIONS
-----248
WHY
SHELL
EXPERTS
"
LIKE
"
FIXED
BED
REACTORS
FOR
GTL?
-
250
ETHYL
BENZENE
PEROXIDATION
REACTOR
(EBHP)
-
254
INTRODUCTION
TO
THE
CASE
-
254
REACTION
DESCRIPTION
-
255
THE
LIQUID-PHASE
RTD
EXPERIMENTS
-
256
RESULTS
OF
THE
LIQUID-PHASE
RTD
EXPERIMENTS
-
257
RESULTS
OF
THE
GAS
PHASE
RTD
EXPERIMENTS
-
259
COMMERCIAL
PLANT
IMPROVEMENTS
-
263
TAKEAWAY
LEARNING
POINTS
-
264
A
NEW
CATALYST
SHAPE:
PRESSURE
DROP
AND
PACKING
DENSITY
-
265
INTRODUCTION
-----265
INITIAL
EVALUATION
-
266
EXPERIMENTAL
RESULTS
-
267
TAKEAWAY
LEARNING
POINTS
-----267
HEAVY
RESIDUE
OIL
UPGRADING:
REACTOR
TYPE
SELECTIONS
AND
DEVELOPMENT
-
268
13.5.1
13.5.2
13.5.3
HEAVY
RESIDUE
UPGRADING
INTRODUCTION
----
268
HEAVY
RESIDUE
UPGRADING
REACTION
CHEMISTRY
-
269
SHELL
BUNKER
FLOW
SELECTION
AND
THE
DEVELOPMENT
TO
COMMERCIAL
SCALE
-
270
13.5.4
LC-FININGYY
RESIDUE
HYDROCRACKING
IN
THREE-PHASE
SLURRY-EBULLATED-BED
REACTOR
-
274
13.5.5
13.5.6
13.5.7
13.5.8
13.6
13.7
13.7.1
13.7.2
13.8
HEAVY
OIL
UPGRADING
BY
COKING
WITH
EXXON
FLEXICOKER
FLUID
BED
-
275
REACTOR
TYPE
COMPARISON
-
HEAVY
PETROLEUM
UPGRADE
-
275
EXERCISES----
276
TAKEAWAY
LEARNING
POINTS
-
276
REACTOR
STABILITY
IN
AN
ADIABATIC
TRICKLE-BED
REACTOR
-
277
THREE-PHASE
SLURRY-REACTIVE
DISTILLATION
-
279
INTRODUCTION
----
279
TAKEAWAY
LEARNING
POINTS
-
280
FLUID
BED
RETORTING
SHALE
OIL
-----280
CONTENTS
-
XIII
13.8.1
13.8.2
13.8.3
13.8.4
13.8.5
13.8.6
13.8.7
PROJECT
STARTING
POINTS
-
280
REACTION
KINETICS,
REACTORS,
AND
PROCESS
CONCEPT
SELECTIONS
-
281
SHALE
CHARACTERISTICS
-
282
PROCESS
CONCEPT
-
282
PROCESS
CONDITIONS
-
282
PROCESS
RESEARCH
ITEMS
-
283
TAKEAWAY
LEARNING
POINTS
-
285
REFERENCES:
FLUID
BED
RETORTING
OF
SHALE
-
286
INDEX
-
321
14
14.1
14.2
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6
14.3.7
14.3.8
14.3.9
14.4
14.4.1
14.4.2
14.5
14.5.1
14.5.2
14.5.3
14.5.4
14.6
14.7
14.7.1
EDUCATION
CASE
STUDY:
POLYOLEFIN
CRE
AND
SCALE-UP
-
287
INTRODUCTION
----
287
DISCOVERY-STAGE
REACTOR
FAMILY
SELECTION
-
287
CONCEPT
STAGE
-
288
SCALE-INDEPENDENT
BASICS
----
288
CHEMISTRY
AND
STOICHIOMETRY
OF
THE
REACTION
-
288
HEAT
OF
REACTIONS
-
291
PHYSICAL
PROPERTIES
-
292
REACTION
ENGINEERING
CONCEPT
DESIGN
-
292
SOLID-PHASE
RESIDENCE
TIME
DISTRIBUTION
-
293
MASS
TRANSFER
LIMITATIONS
AND
CONCEPT
DESIGN
CHOICES
-
295
HEAT
TRANSFER
LIMITATIONS
AND
CONCEPT
DESIGN
-
297
MODELING
FOR
REACTOR
SIZING
-----303
FEASIBILITY
STAGE
-
304
INTRODUCTION
----
304
COMMERCIAL-SCALE
DESIGN
IN
FEASIBILITY
STAGE
-
304
DEVELOPMENT
STAGE
-
310
PILOT
PLANT
DESIGN
-
310
ECONOMICS
COMMERCIAL
SCALE,
PILOT
PLANT
AND
MOCK-UP
MODEL
-
313
RISKS
AND
VALUE
OF
INFORMATION
ASSESSMENT
-
313
DEVELOPMENT:
FRONT-END
ENGINEERING
DESIGN
-
315
COMMERCIAL-SCALE
IMPLEMENTATION
(EPC
AND
START-UP)
-
315
EXERCISES
----
315
EXERCISE
1:
THIELE
MODULUS
DESCRIPTION
AND
CALCULATION
FOR
POLYOLEFIN
CATALYST
----
315
14.7.2
14.7.3
14.8
14.9
EXERCISE
2:
TEMPERATURE
CATALYST
PARTICLE
-
316
EXERCISE
3:
POLYETHYLENE
REACTOR
DESIGN
-
316
TAKEAWAY
LEARNING
POINTS
-
316
LIST
OF
SYMBOLS
----
318
REFERENCES
-
318 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Harmsen, Jan Bos, René |
author_GND | (DE-588)1295223376 (DE-588)1295223627 |
author_facet | Harmsen, Jan Bos, René |
author_role | aut aut |
author_sort | Harmsen, Jan |
author_variant | j h jh r b rb |
building | Verbundindex |
bvnumber | BV049107590 |
classification_rvk | VN 7320 VN 7300 |
ctrlnum | (OCoLC)1390740500 (DE-599)DNB1278594914 |
dewey-full | 660.2832 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 660 - Chemical engineering |
dewey-raw | 660.2832 |
dewey-search | 660.2832 |
dewey-sort | 3660.2832 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie |
discipline_str_mv | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049107590</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240813</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230821s2023 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,N04</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,A29</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1278594914</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110713763</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-3-11-071376-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1390740500</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1278594914</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660.2832</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7320</subfield><subfield code="0">(DE-625)147617:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7300</subfield><subfield code="0">(DE-625)147616:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harmsen, Jan</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1295223376</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiphase reactors</subfield><subfield code="b">reaction engineering concepts, selection, and industrial applications</subfield><subfield code="c">Jan Harmsen, René Bos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 320 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter graduate</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrphasenreaktor</subfield><subfield code="0">(DE-588)4125884-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemieingeniurwesen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemische Technik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemical Reaction Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Three-Phase Reactors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Reactor Selection</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Scale-up</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Residence-Time Distribution</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mass Transfer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Heat Transfer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemical Technology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Process Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">TB: Textbook</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemical Reaction Engineering;Three-Phase Reactors;Reactor Selection;Scale-up;Residence-Time Distribution;Mass Transfer;Heat Transfer;Chemical Technology;Chemical Engineering;Process Engineering;</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mehrphasenreaktor</subfield><subfield code="0">(DE-588)4125884-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bos, René</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1295223627</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-071377-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-071384-8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">https://www.degruyter.com/isbn/9783110713763</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1278594914/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034368974&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034368974</subfield></datafield></record></collection> |
id | DE-604.BV049107590 |
illustrated | Illustrated |
index_date | 2024-07-03T22:34:07Z |
indexdate | 2024-08-14T00:09:08Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110713763 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034368974 |
oclc_num | 1390740500 |
open_access_boolean | |
owner | DE-703 DE-11 |
owner_facet | DE-703 DE-11 |
physical | XIX, 320 Seiten Illustrationen, Diagramme |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter graduate |
spelling | Harmsen, Jan Verfasser (DE-588)1295223376 aut Multiphase reactors reaction engineering concepts, selection, and industrial applications Jan Harmsen, René Bos Berlin De Gruyter [2023] © 2023 XIX, 320 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier De Gruyter graduate Mehrphasenreaktor (DE-588)4125884-8 gnd rswk-swf Chemieingeniurwesen Chemische Technik Verfahrenstechnik Chemical Reaction Engineering Three-Phase Reactors Reactor Selection Scale-up Residence-Time Distribution Mass Transfer Heat Transfer Chemical Technology Chemical Engineering Process Engineering TB: Textbook Chemical Reaction Engineering;Three-Phase Reactors;Reactor Selection;Scale-up;Residence-Time Distribution;Mass Transfer;Heat Transfer;Chemical Technology;Chemical Engineering;Process Engineering; Mehrphasenreaktor (DE-588)4125884-8 s DE-604 Bos, René Verfasser (DE-588)1295223627 aut Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-11-071377-0 Erscheint auch als Online-Ausgabe, EPUB 978-3-11-071384-8 X:MVB https://www.degruyter.com/isbn/9783110713763 B:DE-101 application/pdf https://d-nb.info/1278594914/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034368974&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Harmsen, Jan Bos, René Multiphase reactors reaction engineering concepts, selection, and industrial applications Mehrphasenreaktor (DE-588)4125884-8 gnd |
subject_GND | (DE-588)4125884-8 |
title | Multiphase reactors reaction engineering concepts, selection, and industrial applications |
title_auth | Multiphase reactors reaction engineering concepts, selection, and industrial applications |
title_exact_search | Multiphase reactors reaction engineering concepts, selection, and industrial applications |
title_exact_search_txtP | Multiphase reactors reaction engineering concepts, selection, and industrial applications |
title_full | Multiphase reactors reaction engineering concepts, selection, and industrial applications Jan Harmsen, René Bos |
title_fullStr | Multiphase reactors reaction engineering concepts, selection, and industrial applications Jan Harmsen, René Bos |
title_full_unstemmed | Multiphase reactors reaction engineering concepts, selection, and industrial applications Jan Harmsen, René Bos |
title_short | Multiphase reactors |
title_sort | multiphase reactors reaction engineering concepts selection and industrial applications |
title_sub | reaction engineering concepts, selection, and industrial applications |
topic | Mehrphasenreaktor (DE-588)4125884-8 gnd |
topic_facet | Mehrphasenreaktor |
url | https://www.degruyter.com/isbn/9783110713763 https://d-nb.info/1278594914/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034368974&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT harmsenjan multiphasereactorsreactionengineeringconceptsselectionandindustrialapplications AT bosrene multiphasereactorsreactionengineeringconceptsselectionandindustrialapplications AT walterdegruytergmbhcokg multiphasereactorsreactionengineeringconceptsselectionandindustrialapplications |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis