Mortality modeling: machine learning and mortality shocks:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Stuttgart
Fraunhofer Verlag
[2022]
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | xviii, 178 Seiten Diagramme 21 cm |
ISBN: | 9783839618318 3839618312 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049104386 | ||
003 | DE-604 | ||
005 | 20241017 | ||
007 | t | ||
008 | 230818s2022 gw |||| m||| 00||| eng d | ||
015 | |a 22,N32 |2 dnb | ||
015 | |a 23,A08 |2 dnb | ||
015 | |a 23,H03 |2 dnb | ||
016 | 7 | |a 1264151608 |2 DE-101 | |
020 | |a 9783839618318 |c Broschur : EUR 83.00 (DE), EUR 85.40 (AT), CHF 127.90 (freier Preis) |9 978-3-8396-1831-8 | ||
020 | |a 3839618312 |9 3-8396-1831-2 | ||
024 | 3 | |a 9783839618318 | |
028 | 5 | 2 | |a Bestellnummer: fhg-twm_57 |
035 | |a (OCoLC)1370941752 | ||
035 | |a (DE-599)DNB1264151608 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-29T | ||
084 | |8 1\p |a 004 |2 23sdnb | ||
084 | |8 2\p |a 100 |2 23sdnb | ||
100 | 1 | |a Schnürch, Simon |e Verfasser |0 (DE-588)1273780213 |4 aut | |
245 | 1 | 0 | |a Mortality modeling: machine learning and mortality shocks |c Simon Schnürch |
264 | 1 | |a Stuttgart |b Fraunhofer Verlag |c [2022] | |
300 | |a xviii, 178 Seiten |b Diagramme |c 21 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Technische Universität Kaiserslautern |d 2022 | ||
650 | 0 | 7 | |a Sterblichkeit |0 (DE-588)4057312-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
653 | |a Mortality modeling | ||
653 | |a Machine learning | ||
653 | |a Mortality shocks | ||
653 | |a Lee-Carter model | ||
653 | |a Neural networks | ||
653 | |a Versicherungsmathematiker/Aktuare | ||
653 | |a Demographen | ||
653 | |a Statistiker | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Sterblichkeit |0 (DE-588)4057312-6 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Fraunhofer-Institut für Techno- und Wirtschaftsmathematik |0 (DE-588)10126139-1 |4 isb | |
710 | 2 | |a Fraunhofer IRB-Verlag |0 (DE-588)4786605-6 |4 pbl | |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2dee14104503473bb1c44a94054df079&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1264151608/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034365855&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 2 | |8 1\p |a dnb |d 20230213 |q DE-101 |u https://d-nb.info/provenance/plan#dnb | |
883 | 2 | |8 2\p |a dnb |d 20230213 |q DE-101 |u https://d-nb.info/provenance/plan#dnb | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034365855 |
Datensatz im Suchindex
_version_ | 1813169996073795584 |
---|---|
adam_text |
CONTENTS
ABSTRACT
.
III
ZUSAMMENFASSUNG
.
V
DANKSAGUNG
.
VII
FREQUENTLY
USED
NOTATION
.
XIII
LIST
OF
ACRONYMS
AND
ABBREVIATIONS
.
XVII
1
INTRODUCTION
.
1
1.1
OUTLINE
OF
THIS
THESIS
.
4
1.2
PRELIMINARIES
.
5
2
STOCHASTIC
MORTALITY
MODELS:
A
REVIEW
.
7
2.1
SINGLE-POPULATION
MORTALITY
MODELS
.
7
2.1.1
THE
LEE-CARTER
MODEL
.
7
2.1.2
THE
CAIRNS-BLAKC-DOWD
MODEL
.
9
2.1.3
MODEL
EXTENSIONS:
COHORT
EFFECTS
AND
EXTERNAL
INFORMATION
.
10
2.1.4
OTHER
MODELING
APPROACHES
.
12
2.2
MULTI-POPULATION
MORTALITY
MODELS
.
12
2.2.1
THE
INDIVIDUAL
LEE-CARTER
MODEL
.
12
2.2.2
THE
AUGMENTED
COMMON
FACTOR
MODEL
.
14
2.2.3
THE
COMMON
AGE
EFFECT
MODEL
.
15
2.2.4
APPLYING
CLUSTERING
METHODS
.
17
2.2.5
MODELS
BASED
ON
REFERENCE
POPULATIONS
.
18
2.2.6
OTHER
MODELING
APPROACHES
.
19
2.3
MODEL
CALIBRATION
.
20
2.3.1
POISSON
MAXIMUM
LIKELIHOOD
ESTIMATION
.
20
2.3.2
THE
BAYESIAN
INFORMATION
CRITERION
.
21
2.4
FORECASTS
AND
UNCERTAINTY
.
22
2.4.1
POINT
FORECASTS
.
22
2.4.2
PREDICTION
UNCERTAINTY
.
22
2.4.3
INTERVAL
FORECASTS
.
24
2.4.4
EVALUATING
FORECASTING
PERFORMANCE
.
25
2.5
MACHINE
LEARNING
APPLICATIONS
IN
MORTALITY
MODELING
.
27
3
CLUSTERING-BASED
EXTENSIONS
OF
THE
COMMON
AGE
EFFECT
MODEL
.
29
3.1
ALGORITHMS
.
30
3.1.1
K-MEANS
CLUSTERING
.
30
3.1.2
AUGMENTED
COMMON
FACTOR
CLUSTERING
.
32
3.1.3
LIKELIHOOD-RATIO-BASED
CLUSTERING
.
35
3.1.4
FUZZY
MAXIMUM
LIKELIHOOD
CLUSTERING
.
39
3.1.5
CALCULATING
THE
NUMBER
OF
FREE
PARAMETERS
.
51
3.2
EMPIRICAL
RESULTS
.
51
3.2.1
CLUSTERING
RESULTS
.
52
3.2.2
GOODNESS
OF
FIT
.
58
3.2.3
FORECASTING
PERFORMANCE
.
60
3.3
CONCLUSION
.
63
3.
A
RESULTS
FOR
THE
AGE
GROUP
18
TO
52
.
65
3.B
ROBUSTNESS
CHECK:
OUT-OF-SAMPLE
RESULTS
.
70
4
FORECASTING
MORTALITY
WITH
NEURAL
NETWORKS
.
73
4.1
NEURAL
NETWORK
ARCHITECTURES
.
75
4.1.1
FEED-FORWARD
NEURAL
NETWORKS
.
75
4.1.2
HYPERPARAMETER
SELECTION
AND
MODEL
TRAINING
.
76
4.1.3
RECURRENT
NEURAL
NETWORKS
.
79
4.1.4
CONVOLUTIONAL
NEURAL
NETWORKS
.
80
4.2
PREDICTION
UNCERTAINTY
.
87
4.2.1
LITERATURE
REVIEW
.
88
4.2.2
OUR
APPROACH
.
90
4.3
EMPIRICAL
RESULTS
.
91
4.3.1
GOODNESS
OF
FIT
.
93
4.3.2
FORECASTING
PERFORMANCE
.
94
4.3.3
PREDICTION
UNCERTAINTY
.
98
4.3.4
ROBUSTNESS
CHECK
.
100
4.3.5
LONG-TERM
FORECASTS
AND
ANNUITY
VALUES
.
103
4.4
CONCLUSION
.
106
4
.
A
HYPERPARAMETERS
OF
THE
NEURAL
NETWORKS
.
108
5
COVID-19-TYPE
MORTALITY
SHOCKS:
IMPACT
AND
MODEL
ADJUSTMENTS
.
ILL
5.1
DATA
.
113
5.2
MEASURING
THE
IMPACT
OF
MORTALITY
SHOCKS
.
114
5.2.1
MORTALITY
STATISTICS
.
114
5.2.2
MORTALITY
FORECASTS
AND
INSURANCE
CONTRACTS
.
116
5.2.3
IMPACT
OF
A
MORTALITY
SHIFT
ON
PARAMETERS
AND
FORECASTS
.
118
5.3
EMPIRICAL
RESULTS:
IMPACT
OF
THE
COVID-19
PANDEMIC
.
122
5.3.1
MORTALITY
DEVELOPMENT
IN
2020
.
122
5.3.2
MORTALITY
SHOCK
IN
THE
JUMP-OFF
YEAR
.
127
5.3.3
MORTALITY
SHOCK
BEFORE
THE
JUMP-OFF
YEAR
.
128
5.3.4
ROBUSTNESS
CHECK:
USING
A
DIFFERENT
CALIBRATION
METHOD
.
130
5.3.5
ROBUSTNESS
CHECK:
THE
CAIRNS-BLAKE-DOWD
MODEL
.
131
5.4
ADJUSTING
MODELS
FOR
MORTALITY
SHOCKS
.
131
5.4.1
FORECASTING
THE
PERIOD
EFFECT
WITH
AN
ARIMA
MODEL
.
132
5.4.2
DEALING
WITH
MORTALITY
SHOCKS
IN
AN
ARIMA
SETTING
.
133
5.4.3
A
MODIFIED
SHOCK
MODEL
CALIBRATION
PROCEDURE
.
137
5.5
EMPIRICAL
RESULTS:
EVALUATION
OF
MODEL
ADJUSTMENTS
.
137
5.5.1
CHECKING
THE
NORMAL
DISTRIBUTION
ASSUMPTION
.
137
5.5.2
EVALUATING
OUR
SHOCK
MODEL
CALIBRATION
PROCEDURE
.
139
5.5.3
MODEL
PARAMETERS
.
139
5.5.4
GOODNESS
OF
FIT
.
141
5.5.5
BACKTEST
.
143
5.5.6
LIFE
INSURANCE
AND
ANNUITY
VALUES
.
144
5.5.7
MODEL
PERFORMANCE
UNDER
DIFFERENT
FUTURE
SCENARIOS
.
146
5.6
CONCLUSION
.
148
5.
A
RECALIBRATION
CONSISTENCY
OF
THE
LC
MODEL
.
150
5.B
ADDITIONAL
FIGURES
FOR
SECTION
5.3
.
151
5.C
DEFINING
SCENARIOS
OF
FUTURE
MORTALITY
.
156
5.D
ANNUITY
VALUES
.
158
6
OUTLOOK
.159
BIBLIOGRAPHY
.
161
SCIENTIFIC
CAREER
.
175
WISSENSCHAFTLICHER
WERDEGANG
.
177 |
adam_txt |
CONTENTS
ABSTRACT
.
III
ZUSAMMENFASSUNG
.
V
DANKSAGUNG
.
VII
FREQUENTLY
USED
NOTATION
.
XIII
LIST
OF
ACRONYMS
AND
ABBREVIATIONS
.
XVII
1
INTRODUCTION
.
1
1.1
OUTLINE
OF
THIS
THESIS
.
4
1.2
PRELIMINARIES
.
5
2
STOCHASTIC
MORTALITY
MODELS:
A
REVIEW
.
7
2.1
SINGLE-POPULATION
MORTALITY
MODELS
.
7
2.1.1
THE
LEE-CARTER
MODEL
.
7
2.1.2
THE
CAIRNS-BLAKC-DOWD
MODEL
.
9
2.1.3
MODEL
EXTENSIONS:
COHORT
EFFECTS
AND
EXTERNAL
INFORMATION
.
10
2.1.4
OTHER
MODELING
APPROACHES
.
12
2.2
MULTI-POPULATION
MORTALITY
MODELS
.
12
2.2.1
THE
INDIVIDUAL
LEE-CARTER
MODEL
.
12
2.2.2
THE
AUGMENTED
COMMON
FACTOR
MODEL
.
14
2.2.3
THE
COMMON
AGE
EFFECT
MODEL
.
15
2.2.4
APPLYING
CLUSTERING
METHODS
.
17
2.2.5
MODELS
BASED
ON
REFERENCE
POPULATIONS
.
18
2.2.6
OTHER
MODELING
APPROACHES
.
19
2.3
MODEL
CALIBRATION
.
20
2.3.1
POISSON
MAXIMUM
LIKELIHOOD
ESTIMATION
.
20
2.3.2
THE
BAYESIAN
INFORMATION
CRITERION
.
21
2.4
FORECASTS
AND
UNCERTAINTY
.
22
2.4.1
POINT
FORECASTS
.
22
2.4.2
PREDICTION
UNCERTAINTY
.
22
2.4.3
INTERVAL
FORECASTS
.
24
2.4.4
EVALUATING
FORECASTING
PERFORMANCE
.
25
2.5
MACHINE
LEARNING
APPLICATIONS
IN
MORTALITY
MODELING
.
27
3
CLUSTERING-BASED
EXTENSIONS
OF
THE
COMMON
AGE
EFFECT
MODEL
.
29
3.1
ALGORITHMS
.
30
3.1.1
K-MEANS
CLUSTERING
.
30
3.1.2
AUGMENTED
COMMON
FACTOR
CLUSTERING
.
32
3.1.3
LIKELIHOOD-RATIO-BASED
CLUSTERING
.
35
3.1.4
FUZZY
MAXIMUM
LIKELIHOOD
CLUSTERING
.
39
3.1.5
CALCULATING
THE
NUMBER
OF
FREE
PARAMETERS
.
51
3.2
EMPIRICAL
RESULTS
.
51
3.2.1
CLUSTERING
RESULTS
.
52
3.2.2
GOODNESS
OF
FIT
.
58
3.2.3
FORECASTING
PERFORMANCE
.
60
3.3
CONCLUSION
.
63
3.
A
RESULTS
FOR
THE
AGE
GROUP
18
TO
52
.
65
3.B
ROBUSTNESS
CHECK:
OUT-OF-SAMPLE
RESULTS
.
70
4
FORECASTING
MORTALITY
WITH
NEURAL
NETWORKS
.
73
4.1
NEURAL
NETWORK
ARCHITECTURES
.
75
4.1.1
FEED-FORWARD
NEURAL
NETWORKS
.
75
4.1.2
HYPERPARAMETER
SELECTION
AND
MODEL
TRAINING
.
76
4.1.3
RECURRENT
NEURAL
NETWORKS
.
79
4.1.4
CONVOLUTIONAL
NEURAL
NETWORKS
.
80
4.2
PREDICTION
UNCERTAINTY
.
87
4.2.1
LITERATURE
REVIEW
.
88
4.2.2
OUR
APPROACH
.
90
4.3
EMPIRICAL
RESULTS
.
91
4.3.1
GOODNESS
OF
FIT
.
93
4.3.2
FORECASTING
PERFORMANCE
.
94
4.3.3
PREDICTION
UNCERTAINTY
.
98
4.3.4
ROBUSTNESS
CHECK
.
100
4.3.5
LONG-TERM
FORECASTS
AND
ANNUITY
VALUES
.
103
4.4
CONCLUSION
.
106
4
.
A
HYPERPARAMETERS
OF
THE
NEURAL
NETWORKS
.
108
5
COVID-19-TYPE
MORTALITY
SHOCKS:
IMPACT
AND
MODEL
ADJUSTMENTS
.
ILL
5.1
DATA
.
113
5.2
MEASURING
THE
IMPACT
OF
MORTALITY
SHOCKS
.
114
5.2.1
MORTALITY
STATISTICS
.
114
5.2.2
MORTALITY
FORECASTS
AND
INSURANCE
CONTRACTS
.
116
5.2.3
IMPACT
OF
A
MORTALITY
SHIFT
ON
PARAMETERS
AND
FORECASTS
.
118
5.3
EMPIRICAL
RESULTS:
IMPACT
OF
THE
COVID-19
PANDEMIC
.
122
5.3.1
MORTALITY
DEVELOPMENT
IN
2020
.
122
5.3.2
MORTALITY
SHOCK
IN
THE
JUMP-OFF
YEAR
.
127
5.3.3
MORTALITY
SHOCK
BEFORE
THE
JUMP-OFF
YEAR
.
128
5.3.4
ROBUSTNESS
CHECK:
USING
A
DIFFERENT
CALIBRATION
METHOD
.
130
5.3.5
ROBUSTNESS
CHECK:
THE
CAIRNS-BLAKE-DOWD
MODEL
.
131
5.4
ADJUSTING
MODELS
FOR
MORTALITY
SHOCKS
.
131
5.4.1
FORECASTING
THE
PERIOD
EFFECT
WITH
AN
ARIMA
MODEL
.
132
5.4.2
DEALING
WITH
MORTALITY
SHOCKS
IN
AN
ARIMA
SETTING
.
133
5.4.3
A
MODIFIED
SHOCK
MODEL
CALIBRATION
PROCEDURE
.
137
5.5
EMPIRICAL
RESULTS:
EVALUATION
OF
MODEL
ADJUSTMENTS
.
137
5.5.1
CHECKING
THE
NORMAL
DISTRIBUTION
ASSUMPTION
.
137
5.5.2
EVALUATING
OUR
SHOCK
MODEL
CALIBRATION
PROCEDURE
.
139
5.5.3
MODEL
PARAMETERS
.
139
5.5.4
GOODNESS
OF
FIT
.
141
5.5.5
BACKTEST
.
143
5.5.6
LIFE
INSURANCE
AND
ANNUITY
VALUES
.
144
5.5.7
MODEL
PERFORMANCE
UNDER
DIFFERENT
FUTURE
SCENARIOS
.
146
5.6
CONCLUSION
.
148
5.
A
RECALIBRATION
CONSISTENCY
OF
THE
LC
MODEL
.
150
5.B
ADDITIONAL
FIGURES
FOR
SECTION
5.3
.
151
5.C
DEFINING
SCENARIOS
OF
FUTURE
MORTALITY
.
156
5.D
ANNUITY
VALUES
.
158
6
OUTLOOK
.159
BIBLIOGRAPHY
.
161
SCIENTIFIC
CAREER
.
175
WISSENSCHAFTLICHER
WERDEGANG
.
177 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Schnürch, Simon |
author_GND | (DE-588)1273780213 |
author_facet | Schnürch, Simon |
author_role | aut |
author_sort | Schnürch, Simon |
author_variant | s s ss |
building | Verbundindex |
bvnumber | BV049104386 |
ctrlnum | (OCoLC)1370941752 (DE-599)DNB1264151608 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049104386</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241017</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230818s2022 gw |||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,N32</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,A08</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,H03</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1264151608</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783839618318</subfield><subfield code="c">Broschur : EUR 83.00 (DE), EUR 85.40 (AT), CHF 127.90 (freier Preis)</subfield><subfield code="9">978-3-8396-1831-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3839618312</subfield><subfield code="9">3-8396-1831-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783839618318</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: fhg-twm_57</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1370941752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1264151608</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">004</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">100</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schnürch, Simon</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1273780213</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mortality modeling: machine learning and mortality shocks</subfield><subfield code="c">Simon Schnürch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stuttgart</subfield><subfield code="b">Fraunhofer Verlag</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 178 Seiten</subfield><subfield code="b">Diagramme</subfield><subfield code="c">21 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Technische Universität Kaiserslautern</subfield><subfield code="d">2022</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sterblichkeit</subfield><subfield code="0">(DE-588)4057312-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mortality modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mortality shocks</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lee-Carter model</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Neural networks</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Versicherungsmathematiker/Aktuare</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Demographen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Statistiker</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sterblichkeit</subfield><subfield code="0">(DE-588)4057312-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Fraunhofer-Institut für Techno- und Wirtschaftsmathematik</subfield><subfield code="0">(DE-588)10126139-1</subfield><subfield code="4">isb</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Fraunhofer IRB-Verlag</subfield><subfield code="0">(DE-588)4786605-6</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2dee14104503473bb1c44a94054df079&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1264151608/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034365855&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">dnb</subfield><subfield code="d">20230213</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#dnb</subfield></datafield><datafield tag="883" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">dnb</subfield><subfield code="d">20230213</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#dnb</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034365855</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV049104386 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:33:32Z |
indexdate | 2024-10-17T14:00:56Z |
institution | BVB |
institution_GND | (DE-588)10126139-1 (DE-588)4786605-6 |
isbn | 9783839618318 3839618312 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034365855 |
oclc_num | 1370941752 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xviii, 178 Seiten Diagramme 21 cm |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Fraunhofer Verlag |
record_format | marc |
spelling | Schnürch, Simon Verfasser (DE-588)1273780213 aut Mortality modeling: machine learning and mortality shocks Simon Schnürch Stuttgart Fraunhofer Verlag [2022] xviii, 178 Seiten Diagramme 21 cm txt rdacontent n rdamedia nc rdacarrier Dissertation Technische Universität Kaiserslautern 2022 Sterblichkeit (DE-588)4057312-6 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Mortality modeling Machine learning Mortality shocks Lee-Carter model Neural networks Versicherungsmathematiker/Aktuare Demographen Statistiker (DE-588)4113937-9 Hochschulschrift gnd-content Sterblichkeit (DE-588)4057312-6 s Maschinelles Lernen (DE-588)4193754-5 s Statistik (DE-588)4056995-0 s DE-604 Fraunhofer-Institut für Techno- und Wirtschaftsmathematik (DE-588)10126139-1 isb Fraunhofer IRB-Verlag (DE-588)4786605-6 pbl X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2dee14104503473bb1c44a94054df079&prov=M&dok_var=1&dok_ext=htm Inhaltstext B:DE-101 application/pdf https://d-nb.info/1264151608/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034365855&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p dnb 20230213 DE-101 https://d-nb.info/provenance/plan#dnb 2\p dnb 20230213 DE-101 https://d-nb.info/provenance/plan#dnb |
spellingShingle | Schnürch, Simon Mortality modeling: machine learning and mortality shocks Sterblichkeit (DE-588)4057312-6 gnd Statistik (DE-588)4056995-0 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4057312-6 (DE-588)4056995-0 (DE-588)4193754-5 (DE-588)4113937-9 |
title | Mortality modeling: machine learning and mortality shocks |
title_auth | Mortality modeling: machine learning and mortality shocks |
title_exact_search | Mortality modeling: machine learning and mortality shocks |
title_exact_search_txtP | Mortality modeling: machine learning and mortality shocks |
title_full | Mortality modeling: machine learning and mortality shocks Simon Schnürch |
title_fullStr | Mortality modeling: machine learning and mortality shocks Simon Schnürch |
title_full_unstemmed | Mortality modeling: machine learning and mortality shocks Simon Schnürch |
title_short | Mortality modeling: machine learning and mortality shocks |
title_sort | mortality modeling machine learning and mortality shocks |
topic | Sterblichkeit (DE-588)4057312-6 gnd Statistik (DE-588)4056995-0 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Sterblichkeit Statistik Maschinelles Lernen Hochschulschrift |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2dee14104503473bb1c44a94054df079&prov=M&dok_var=1&dok_ext=htm https://d-nb.info/1264151608/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034365855&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schnurchsimon mortalitymodelingmachinelearningandmortalityshocks AT fraunhoferinstitutfurtechnoundwirtschaftsmathematik mortalitymodelingmachinelearningandmortalityshocks AT fraunhoferirbverlag mortalitymodelingmachinelearningandmortalityshocks |