Advanced chemical process control: putting theory into practice
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2023]
|
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35223-4/ Inhaltsverzeichnis |
Beschreibung: | xxxv, 326 Seiten Illustrationen 24.4 cm x 17 cm |
ISBN: | 9783527352234 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV049097727 | ||
003 | DE-604 | ||
005 | 20230825 | ||
007 | t | ||
008 | 230810s2023 gw a||| |||| 00||| eng d | ||
015 | |a 23,N06 |2 dnb | ||
016 | 7 | |a 1280080434 |2 DE-101 | |
020 | |a 9783527352234 |c : EUR 119.00 (DE) (freier Preis), EUR 122.40 (AT) (freier Preis) |9 978-3-527-35223-4 | ||
024 | 3 | |a 9783527352234 | |
028 | 5 | 2 | |a Bestellnummer: 1135223 000 |
035 | |a (OCoLC)1401183431 | ||
035 | |a (DE-599)DNB1280080434 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-29T | ||
084 | |8 1\p |a 540 |2 23sdnb | ||
100 | 1 | |a Hovd, Morten |e Verfasser |4 aut | |
245 | 1 | 0 | |a Advanced chemical process control |b putting theory into practice |c Morten Hovd |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2023] | |
300 | |a xxxv, 326 Seiten |b Illustrationen |c 24.4 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modellprädiktive Regelung |0 (DE-588)1135937567 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prozessregelung |0 (DE-588)4222919-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prozesssteuerung |0 (DE-588)4047594-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kontrolltheorie |0 (DE-588)4032317-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prozessüberwachung |0 (DE-588)4133922-8 |2 gnd |9 rswk-swf |
653 | |a CG10: Prozesssteuerung | ||
653 | |a CH30: Technische u. Industrielle Chemie | ||
653 | |a Chemical Engineering | ||
653 | |a Chemie | ||
653 | |a Chemische Verfahrenstechnik | ||
653 | |a Chemistry | ||
653 | |a Control Process & Measurements | ||
653 | |a Industrial Chemistry | ||
653 | |a ME50: Mess- u. Regeltechnik | ||
653 | |a Maschinenbau | ||
653 | |a Mechanical Engineering | ||
653 | |a Mess- u. Regeltechnik | ||
653 | |a Process Engineering | ||
653 | |a Prozesssteuerung | ||
653 | |a Technische u. Industrielle Chemie | ||
689 | 0 | 0 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |D s |
689 | 0 | 1 | |a Prozessüberwachung |0 (DE-588)4133922-8 |D s |
689 | 0 | 2 | |a Kontrolltheorie |0 (DE-588)4032317-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |D s |
689 | 1 | 1 | |a Prozesssteuerung |0 (DE-588)4047594-3 |D s |
689 | 1 | 2 | |a Prozessregelung |0 (DE-588)4222919-4 |D s |
689 | 1 | 3 | |a Modellprädiktive Regelung |0 (DE-588)1135937567 |D s |
689 | 1 | 4 | |a Prozessüberwachung |0 (DE-588)4133922-8 |D s |
689 | 1 | |5 DE-604 | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-84247-6 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-84248-3 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, oBook |z 978-3-527-84249-0 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35223-4/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034359315&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-034359315 | ||
883 | 1 | |8 1\p |a vlb |d 20230204 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1804185439880347648 |
---|---|
adam_text | VII
CONTENTS
PREFACE
XVII
ACKNOWLEDGMENTS
XXI
ACRONYMS
XXIII
INTRODUCTION
XXV
1
MATHEMATICAL
AND
CONTROL
THEORY
BACKGROUND
1
1.1
INTRODUCTION
1
1.2
MODELS
FOR
DYNAMICAL
SYSTEMS
1
1.2.1
DYNAMICAL
SYSTEMS
IN
CONTINUOUS
TIME
1
1.2.2
DYNAMICAL
SYSTEMS
IN
DISCRETE
TIME
2
1.2.3
LINEAR
MODELS
AND
LINEARIZATION
3
1.2.3.1
LINEARIZATION
AT
A
GIVEN
POINT
3
1.2.3.2
LINEARIZING
AROUND
A
TRAJECTORY
6
1.2.4
CONVERTING
BETWEEN
CONTINUOUS
AND
DISCRETE-TIME
MODELS
6
1.2.4.1
TIME
DELAY
IN
THE
MANIPULATED
VARIABLES
7
1.2.4.2
TIME
DELAY
IN
THE
MEASUREMENTS
9
1.2.5
LAPLACE
TRANSFORM
9
1.2.6
THE
Z
TRANSFORM
10
1.2.7
SIMILARITY
TRANSFORMATIONS
11
1.2.8
MINIMAL
REPRESENTATION
11
1.2.9
SCALING
14
1.3
ANALYZING
LINEAR
DYNAMICAL
SYSTEMS
15
1.3.1
TRANSFER
FUNCTIONS
OF
COMPOSITE
SYSTEMS
15
1.3.1.1
SERIES
INTERCONNECTION
15
13.1.2
PARALLEL
SYSTEMS
16
1.3.1.3
FEEDBACK
CONNECTION
16
1.3.1.4
COMMONLY
USED
CLOSED-LOOP
TRANSFER
FUNCTIONS
17
1.3.1.5
THE
PUSH-THROUGH
RULE
17
1.4
POLES
AND
ZEROS
OF
TRANSFER
FUNCTIONS
18
1.4.1
POLES
OF
MULTIVARIABLE
SYSTEMS
19
1.4.2
POLE
DIRECTIONS
19
1.4.3
ZEROS
OF
MULTIVARIABLE
SYSTEMS
20
1.4.4
ZERO
DIRECTIONS
22
VIII
CONTENTS
1.5
1.5.1
1.5.2
1.5.2.1
1.5.3
1.5.3.1
1.5.3.2
1.5.3.3
1.5.4
STABILITY
23
POLES
AND
ZEROS
OF
DISCRETE-TIME
TRANSFER
FUNCTIONS
23
FREQUENCY
ANALYSIS
24
STEADY-STATE
PHASE
ADJUSTMENT
26
BODE
DIAGRAMS
27
BODE
DIAGRAM
ASYMPTOTES
27
MINIMUM
PHASE
SYSTEMS
29
FREQUENCY
ANALYSIS
FOR
DISCRETE-TIME
SYSTEMS
30
ASSESSING
CLOSED-LOOP
STABILITY
USING
THE
OPEN-LOOP
FREQUENCY
RESPONSE
31
1.5.4.1
1.5.4.2
1.5.4.3
1.5.4.4
1.5.4.5
1.5.4.6
1.5.5
1.5.6
1.5.7
1.5.8
1.5.9
1.5.10
1.5.11
1.5.12
1.5.12.1
1.5.12.2
1.5.13
1.5.13.1
1.5.13.2
1.5.14
THE
PRINCIPLE
OF
THE
ARGUMENT
AND
THE
NYQUIST
D-CONTOUR
31
THE
MULTIVARIABLE
NYQUIST
THEOREM
32
THE
MONOVARIABLE
NYQUIST
THEOREM
32
THE
BODE
STABILITY
CRITERION
32
SOME
REMARKS
ON
STABILITY
ANALYSIS
USING
THE
FREQUENCY
RESPONSE
35
THE
SMALL
GAIN
THEOREM
36
CONTROLLABILITY
37
OBSERVABILITY
38
SOME
COMMENTS
ON
CONTROLLABILITY
AND
OBSERVABILITY
39
STABILIZABILITY
40
DETECTABILITY
40
HIDDEN
MODES
41
INTERNAL
STABILITY
41
COPRIME
FACTORIZATIONS
43
INNER-OUTER
FACTORIZATION
44
NORMALIZED
COPRIME
FACTORIZATION
44
PARAMETRIZATION
OF
ALL
STABILIZING
CONTROLLERS
44
STABLE
PLANTS
45
UNSTABLE
PLANTS
45
HANKEL
NORM
AND
HANKEL
SINGULAR
VALUES
46
PROBLEMS
47
REFERENCES
49
2
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10
CONTROL
CONFIGURATION
AND
CONTROLLER
TUNING
51
COMMON
CONTROL
LOOP
STRUCTURES
FOR
THE
REGULATORY
CONTROL
LAYER
51
SIMPLE
FEEDBACK
LOOP
51
FEEDFORWARD
CONTROL
51
RATIO
CONTROL
54
CASCADE
CONTROL
54
AUCTIONEERING
CONTROL
55
SPLIT
RANGE
CONTROL
56
INPUT
RESETTING
CONTROL
57
SELECTIVE
CONTROL
59
COMBINING
BASIC
SINGLE-LOOP
CONTROL
STRUCTURES
60
DECOUPLING
61
CONTENTS
IX
2.2
INPUT
AND
OUTPUT
SELECTION
62
2.2.1
USING
PHYSICAL
INSIGHTS
63
2.2.2
GRAMIAN-BASED
INPUT
AND
OUTPUT
SELECTION
64
2.2.3
INPUT/OUTPUT
SELECTION
FOR
STABILIZATION
65
2.3
CONTROL
CONFIGURATION
66
2.3.1
THE
RELATIVE
GAIN
ARRAY
66
2.3.2
THE
RGA
AS
A
GENERAL
ANALYSIS
TOOL
68
2.3.2.1
THE
RGA
AND
ZEROS
IN
THE
RIGHT
HALF-PLANE
68
23.2.2
THE
RGA
AND
THE
OPTIMALLY
SCALED
CONDITION
NUMBER
68
23.23
THE
RGA
AND
INDIVIDUAL
ELEMENT
UNCERTAINTY
69
2.3.2.
4
RGA
AND
DIAGONAL
INPUT
UNCERTAINTY
69
23.2.5
THE
RGA
AS
AN
INTERACTION
MEASURE
70
2.3.3
THE
RGA
AND
STABILITY
70
2.3.3.1
THE
RGA
AND
PAIRING
OF
CONTROLLED
AND
MANIPULATED
VARIABLES
71
2.3.4
SUMMARY
OF
RGA-BASED
INPUT-OUTPUT
PAIRING
72
2.3.5
PARTIAL
RELATIVE
GAINS
72
2.3.6
THE
NIEDERLINSKI
INDEX
73
23.7
THE
RIJNSDORP
INTERACTION
MEASURE
73
2.3.8
GRAMIAN-BASED
INPUT-OUTPUT
PAIRING
74
2.3
.8.1
THE
PARTICIPATION
MATRIX
75
23.
8.2
THE
HANKEL
INTERACTION
INDEX
ARRAY
75
23.83
ACCOUNTING
FOR
THE
CLOSED-LOOP
BANDWIDTH
76
2.4
TUNING
OF
DECENTRALIZED
CONTROLLERS
76
2.4.1
INTRODUCTION
76
2.4.2
LOOP
SHAPING
BASICS
77
2.4.3
TUNING
OF
SINGLE-LOOP
CONTROLLERS
79
2.4.3.1
PID
CONTROLLER
REALIZATIONS
AND
COMMON
MODIFICATIONS
79
2.4.3.2
CONTROLLER
TUNING
USING
FREQUENCY
ANALYSIS
81
2.4.3.3
ZIEGLER-NICHOLS
CLOSED-LOOP
TUNING
METHOD
86
2.4.3.4
SIMPLE
FITTING
OF
A
STEP
RESPONSE
MODEL
86
2.4.3.5
ZIEGLER-NICHOLS
OPEN-LOOP
TUNING
88
2.4.3.6
IMC-PID
TUNING
88
2.4.3.7
SIMPLE
IMC
TUNING
89
2.4.3.8
THE
SETPOINT OVERSHOOT
METHOD
91
2.4.3.9
AUTOTUNING
95
2.4.3.10
WHEN
SHOULD
DERIVATIVE
ACTION
BE
USED?
95
2.4.3.11
EFFECTS
OF
INTERNAL
CONTROLLER
SCALING
96
2.4.3.12
REVERSE
ACTING
CONTROLLERS
97
2.4.4
GAIN
SCHEDULING
97
2.4.5
SURGE
ATTENUATING
CONTROLLERS
98
2.4.6
MULTILOOP
CONTROLLER
TUNING
99
2.4.6.1
INDEPENDENT
DESIGN
100
2.4.6.2
SEQUENTIAL
DESIGN
102
2.4.6.3
SIMULTANEOUS
DESIGN
103
2.4.7
TOOLS
FOR
MULTIVARIABLE
LOOP-SHAPING
103
X
CONTENTS
2.4.7.1
2.4.7.2
2.4.73
2.4.7.4
THE
PERFORMANCE
RELATIVE
GAIN
ARRAY
103
THE
CLOSED-LOOP
DISTURBANCE
GAIN
104
ILLUSTRATING
THE
USE
OF
CLDG
S
FOR
CONTROLLER
TUNING
104
UNACHIEVABLE
LOOP
GAIN
REQUIREMENTS
107
PROBLEMS
108
REFERENCES
112
3
3.1
3.1.1
3.1.1.1
3.1.1.2
3.1.2
3.2
3.2.1
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.3.1
3.43.2
3.4.4
3.4.5
3.4.5.1
3.4.5.2
CONTROL
STRUCTURE
SELECTION
AND
PLANTWIDE
CONTROL
115
GENERAL
APPROACH
AND
PROBLEM DECOMPOSITION
115
TOP-DOWN
ANALYSIS
115
DEFINING
AND
EXPLORING
OPTIMAL
OPERATION
115
DETERMINING
WHERE
TO
SET
THE
THROUGHPUT
116
BOTTOM-UP
DESIGN
116
REGULATORY
CONTROL
117
EXAMPLE:
REGULATORY
CONTROL
OF
LIQUID
LEVEL
IN
A
DEAERATION
TOWER
118
DETERMINING
DEGREES
OF
FREEDOM
121
SELECTION
OF
CONTROLLED
VARIABLES
122
PROBLEM
FORMULATION
123
SELECTING
CONTROLLED
VARIABLES
BY
DIRECT
EVALUATION
OF
LOSS
124
CONTROLLED
VARIABLE
SELECTION
BASED
ON
LOCAL
ANALYSIS
125
THE
MINIMUM
SINGULAR
VALUE
RULE
127
DESIRABLE
CHARACTERISTICS
OF
THE
CONTROLLED
VARIABLES
128
AN
EXACT
LOCAL
METHOD
FOR
CONTROLLED
VARIABLE
SELECTION
128
MEASUREMENT
COMBINATIONS
AS
CONTROLLED
VARIABLES
130
THE
NULLSPACE
METHOD
FOR
SELECTING
CONTROLLED
VARIABLES
130
EXTENDING
THE
NULLSPACE
METHOD
TO
ACCOUNT
FOR
IMPLEMENTATION
ERROR
130
3.4.6
3.5
3.5.1
THE
VALIDITY
OF
THE
LOCAL
ANALYSIS
FOR
CONTROLLED
VARIABLE
SELECTION
131
SELECTION
OF
MANIPULATED
VARIABLES
132
VERIFYING
THAT
THE
PROPOSED
MANIPULATED
VARIABLES
MAKE
ACCEPTABLE
CONTROL
POSSIBLE
133
3.5.2
REVIEWING
THE
CHARACTERISTICS
OF
THE
PROPOSED
MANIPULATED
VARIABLES
134
3.6
3.7
3.7.1
SELECTION
OF
MEASUREMENTS
135
MASS
BALANCE
CONTROL
AND
THROUGHPUT
MANIPULATION
136
CONSISTENCY
OF
INVENTORY
CONTROL
138
PROBLEMS
140
REFERENCES
141
4
4.1
4.1.1
4.1.2
4.1.2.1
4.1.2.2
LIMITATIONS
ON
ACHIEVABLE
PERFORMANCE
143
PERFORMANCE
MEASURES
143
TIME-DOMAIN
PERFORMANCE
MEASURES
143
FREQUENCY-DOMAIN
PERFORMANCE
MEASURES
145
BANDWIDTH
FREQUENCY
145
PEAKS
OF
CLOSED-LOOP
TRANSFER
FUNCTIONS
146
CONTENTS
XI
4.1.2.3
4.1.2.4
4.2
4.2.1
4.2.2
4.2.2.1
4.2.2.2
4.3
4.3.1
4.3.1.1
4.3.2
4.3.3
4.3.4
4.4
4.4.1
4.4.1.1
4.4.2
4.4.3
4.4.3.1
4.4.3.2
4.4.4
4.5
4.6
4.6.1
4.6.2
4.6.3
4.7
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.9
4.9.1
4.9.2
4.9.3
4.9.4
BOUNDS
ON
WEIGHTED
SYSTEM
NORMS
146
GAIN
AND
PHASE
MARGIN
147
ALGEBRAIC
LIMITATIONS
148
S+T
=
L
148
INTERPOLATION
CONSTRAINTS
148
MONOVARIABLE
SYSTEMS
148
MULTIVARIABLE
SYSTEMS
149
CONTROL
PERFORMANCE
IN
DIFFERENT
FREQUENCY
RANGES
149
SENSITIVITY
INTEGRALS
AND
RIGHT
HALF-PLANE
ZEROS
149
MULTIVARIABLE
SYSTEMS
150
SENSITIVITY
INTEGRALS
AND
RIGHT
HALF-PLANE
POLES
150
COMBINED
EFFECTS
OF
RHP
POLES
AND
ZEROS
150
IMPLICATIONS
OF
THE
SENSITIVITY
INTEGRAL
RESULTS
150
BOUNDS
ON
CLOSED-LOOP
TRANSFER
FUNCTIONS
151
THE
MAXIMUM MODULUS
PRINCIPLE
152
THE
MAXIMUM
MODULUS
PRINCIPLE
152
MINIMUM
PHASE
AND
STABLE
VERSIONS
OF
THE
PLANT
152
BOUNDS
ON
S
AND
T
153
MONOVARIABLE
SYSTEMS
153
MULTIVARIABLE
SYSTEMS
153
BOUNDS
ON
KS
AND
KSG
D
154
ISE
OPTIMAL
CONTROL
156
BANDWIDTH
AND
CROSSOVER
FREQUENCY
LIMITATIONS
156
BOUNDS
FROM
ISE
OPTIMAL
CONTROL
156
BANDWIDTH
BOUNDS
FROM
WEIGHTED
SENSITIVITY
MINIMIZATION
157
BOUND
FROM
NEGATIVE
PHASE
158
BOUNDS
ON
THE
STEP
RESPONSE
158
BOUNDS
FOR
DISTURBANCE
REJECTION
160
INPUTS
FOR
PERFECT
CONTROL
161
INPUTS
FOR
ACCEPTABLE
CONTROL
161
DISTURBANCES
AND
RHP
ZEROS
161
DISTURBANCES
AND
STABILIZATION
162
LIMITATIONS
FROM
PLANT
UNCERTAINTY
164
DESCRIBING
UNCERTAINTY
165
FEEDFORWARD
CONTROL
AND THE
EFFECTS
OF
UNCERTAINTY
166
FEEDBACK
AND
THE
EFFECTS
OF
UNCERTAINTY
167
BANDWIDTH
LIMITATIONS
FROM
UNCERTAINTY
168
PROBLEMS
168
REFERENCES
170
5
5.1
5.2
5.2.1
5.2.2
MODEL-BASED
PREDICTIVE
CONTROL
173
INTRODUCTION
173
FORMULATION
OF
A
QP
PROBLEM
FOR
MPC
175
FUTURE
STATES
AS
OPTIMIZATION
VARIABLES
179
USING
THE
MODEL
EQUATION
TO
SUBSTITUTE
FOR
THE
PLANT
STATES
180
XII
J
CONTENTS
5.2.3
OPTIMIZING
DEVIATIONS
FROM
LINEAR
STATE
FEEDBACK
181
5.2.4
CONSTRAINTS
BEYOND
THE
END
OF
THE
PREDICTION
HORIZON
182
5.2.5
FINDING
THE
TERMINAL
CONSTRAINT
SET
183
5.2.6
FEASIBLE
REGION
AND
PREDICTION
HORIZON
184
5.3
STEP-RESPONSE
MODELS
185
5.4
UPDATING
THE
PROCESS
MODEL
186
5.4.1
BIAS
UPDATE
186
5.4.2
KALMAN
FILTER
AND
EXTENDED
KALMAN
FILTERS
187
5.4.2.1
AUGMENTING
A
DISTURBANCE
DESCRIPTION
188
5.4.2.2
THE
EXTENDED
KALMAN
FILTER
189
5.4.2.3
THE
ITERATED
EXTENDED
KALMAN
FILTER
189
5.4.3
UNSCENTED
KALMAN
FILTER
190
5.4.4
RECEDING
HORIZON
ESTIMATION
193
5.4.4.1
THE
ARRIVAL
COST
195
5.4.4.2
THE
FILTERING
FORMULATION
OF
RHE
196
5.4.4.3
THE
SMOOTHING
FORMULATION
OF
RHE
196
5.4.5
CONCLUDING
COMMENTS
ON
STATE
ESTIMATION
198
5.5
DISTURBANCE
HANDLING
AND
OFFSET-FREE
CONTROL
199
5.5.1
FEEDFORWARD
FROM
MEASURED
DISTURBANCES
199
5.5.2
REQUIREMENTS
FOR
OFFSET-FREE
CONTROL
199
5.5.3
DISTURBANCE
ESTIMATION
AND
OFFSET-FREE
CONTROL
200
5.5.4
AUGMENTING
THE
MODEL
WITH
INTEGRATORS
AT
THE
PLANT
INPUT
203
5.5.5
AUGMENTING
THE
MODEL
WITH
INTEGRATORS
AT
THE
PLANT
OUTPUT
205
5.5.6
MPC
AND
INTEGRATOR
RESETTING
208
5.6
FEASIBILITY
AND
CONSTRAINT
HANDLING
210
5.7
CLOSED-LOOP
STABILITY
WITH
MPC
CONTROLLERS
212
5.8
TARGET
CALCULATION
213
5.9
SPEEDING
UP
MPC
CALCULATIONS
217
5.9.1
WARM-STARTING
THE
OPTIMIZATION
218
5.9.2
INPUT
BLOCKING
219
5.9.3
ENLARGING
THE
TERMINAL
REGION
220
5.10
ROBUSTNESS
OF
MPC
CONTROLLERS
222
5.11
USING
RIGOROUS
PROCESS
MODELS
IN
MPC
225
5.12
MISCONCEPTIONS,
CLARIFICATIONS,
AND
CHALLENGES
226
5.12.1
MISCONCEPTIONS
226
5.12.1.1
MPC
IS
NOT
GOOD
FOR PERFORMANCE
226
5.12.1.2
MPC
REQUIRES
VERY
ACCURATE
MODELS
227
5.12.1.3
MPC
CANNOT
PRIORITIZE
INPUT
USAGE
OR
CONSTRAINT
VIOLATIONS
227
5.12.2
CHALLENGES
227
5.12.2.1
OBTAINING
A
PLANT
MODEL
228
5.12.2.2
MAINTENANCE
228
5.12.2.3
CAPTURING
THE
DESIRED
BEHAVIOR
IN
THE
MPC
DESIGN
228
PROBLEMS
228
REFERENCES
231
CONTENTS
XIII
6
6.1
6.1.1
6.1.2
6.1.3
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.4
6.4.1
6.4.2
SOME
PRACTICAL
ISSUES
IN
CONTROLLER
IMPLEMENTATION
233
DISCRETE-TIME
IMPLEMENTATION
233
ALIASING
233
SAMPLING
INTERVAL
233
EXECUTION
ORDER
235
PURE
INTEGRATORS
IN
PARALLEL
235
ANTI-WINDUP
236
SIMPLE
PI
CONTROL
ANTI-WINDUP
237
VELOCITY
FORM
OF
PI
CONTROLLERS
237
ANTI-WINDUP
IN
CASCADED
CONTROL
SYSTEMS
238
A
GENERAL
ANTI-WINDUP
FORMULATION
239
HANNS
SELF-CONDITIONED
FORM
240
ANTI-WINDUP
IN
OBSERVER-BASED
CONTROLLERS
241
DECOUPLING
AND
INPUT
CONSTRAINTS
243
ANTI-WINDUP
FOR
NORMALLY
CLOSED
CONTROLLERS
244
BUMPLESS
TRANSFER
245
SWITCHING
BETWEEN
MANUAL
AND
AUTOMATIC
OPERATION
245
CHANGING
CONTROLLER
PARAMETERS
246
PROBLEMS
246
REFERENCES
247
7
7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.3
7.3.1
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
CONTROLLER
PERFORMANCE
MONITORING
AND
DIAGNOSIS
249
INTRODUCTION
249
DETECTION
OF
OSCILLATING
CONTROL
LOOPS
251
THE
AUTOCORRELATION
FUNCTION
251
THE
POWER
SPECTRUM
252
THE
METHOD
OF
MIAO
AND
SEBORG
252
THE
METHOD
OF
HAGGLUND
253
THE
REGULARITY
INDEX
254
THE
METHOD
OF
FORSMAN
AND
STATTIN
255
PREFILTERING
DATA
255
OSCILLATION
DIAGNOSIS
256
MANUAL
OSCILLATION
DIAGNOSIS
256
DETECTING
AND
DIAGNOSING
VALVE
STICTION
257
USING
THE
CROSS-CORRELATION
FUNCTION
TO
DETECT
VALVE
STICTION
257
HISTOGRAMS
FOR
DETECTING
VALVE
STICTION
258
STICTION
DETECTION
USING
AN
OP-PV
PLOT
260
STICTION
COMPENSATION
262
DETECTION
OF
BACKLASH
263
BACKLASH
COMPENSATION
264
SIMULTANEOUS
STICTION
AND
BACKLASH
DETECTION
265
DISCRIMINATING
BETWEEN
EXTERNAL
AND
INTERNALLY
GENERATED
OSCILLATIONS
266
7.3.8
DETECTING
AND
DIAGNOSING
OTHER
NONLINEARITIES
266
XIV
CONTENTS
7.4
PLANTWIDE
OSCILLATIONS
269
7.4.1
GROUPING
OSCILLATING
VARIABLES
269
7.4.1.1
SPECTRAL
PRINCIPAL
COMPONENT
ANALYSIS
269
7.4.1.2
VISUAL
INSPECTION
USING
HIGH-DENSITY
PLOTS
269
1A.13
POWER
SPECTRAL
CORRELATION
MAPS
270
7.4.1.4
THE
SPECTRAL
ENVELOPE
METHOD
271
7.4.1.5
METHODS
BASED
ON
ADAPTIVE
DATA
ANALYSIS
272
7.4.2
LOCATING
THE
CAUSE
FOR
DISTRIBUTED
OSCILLATIONS
273
7.4.2.1
USING
NONLINEARITY
FOR
ROOT
CAUSE
LOCATION
273
7.4.2.2
THE
OSCILLATION
CONTRIBUTION
INDEX
273
7.4.23
ESTIMATING
THE
PROPAGATION
PATH
FOR
DISTURBANCES
274
7.5
CONTROL
LOOP
PERFORMANCE
MONITORING
278
7.5.1
THE
HARRIS
INDEX
278
7.5.2
OBTAINING
THE
IMPULSE
RESPONSE
MODEL
279
7.5.3
CALCULATING
THE
HARRIS
INDEX
280
7.5.4
ESTIMATING
THE
DEADTIME
281
7.5.5
MODIFICATIONS
TO
THE
HARRIS
INDEX
282
7.5.6
ASSESSING
FEEDFORWARD
CONTROL
283
7.5.7
COMMENTS
ON
THE
USE
OF
THE
HARRIS
INDEX
285
7.5.8
PERFORMANCE
MONITORING
FOR
PI
CONTROLLERS
286
7.6
MULTIVARIABLE
CONTROL
PERFORMANCE
MONITORING
287
7.6.1
ASSESSING
FEEDFORWARD
CONTROL
IN
MULTIVARIABLE
CONTROL
287
7.6.2
PERFORMANCE
MONITORING
FOR
MPC
CONTROLLERS
288
7.7
SOME
ISSUES
IN THE
IMPLEMENTATION
OF
CONTROL
PERFORMANCE
MONITORING
290
7.8
DISCUSSION
290
PROBLEMS
291
REFERENCES
291
8
ECONOMIC
CONTROL
BENEFIT
ASSESSMENT
297
8.1
OPTIMAL
OPERATION
AND
OPERATIONAL
CONSTRAINTS
297
8.2
ECONOMIC
PERFORMANCE
FUNCTIONS
298
8.3
EXPECTED
ECONOMIC
BENEFIT
299
8.4
ESTIMATING
ACHIEVABLE
VARIANCE
REDUCTION
300
8.5
WORST-CASE
BACKOFF
CALCULATION
300
REFERENCES
301
A
FOURIER-MOTZKIN
ELIMINATION
303
B
REMOVAL
OF
REDUNDANT
CONSTRAINTS
307
REFERENCE
308
C
THE
SINGULAR
VALUE
DECOMPOSITION
309
CONTENTS
XV
D
FACTORIZATION
OF
TRANSFER
FUNCTIONS
INTO
MINIMUM
PHASE
STABLE
AND
ALL-PASS
PARTS
311
D.1
D.2
D.3
D.4
D.5
D.6
INPUT
FACTORIZATION
OF
RHP
ZEROS
312
OUTPUT
FACTORIZATION
OF
RHP
ZEROS
312
OUTPUT
FACTORIZATION
OF
RHP
POLES
313
INPUT
FACTORIZATION
OF
RHP
POLES
313
SISO
SYSTEMS
314
FACTORING
OUT
BOTH
RHP
POLES
AND
RHP
ZEROS
314
REFERENCE
314
E
E.1
E.2
MODELS
USED
IN
EXAMPLES
315
BINARY
DISTILLATION
COLUMN
MODEL
315
FLUID
CATALYTIC
CRACKER
MODEL
318
REFERENCES
320
INDEX
321
|
adam_txt |
VII
CONTENTS
PREFACE
XVII
ACKNOWLEDGMENTS
XXI
ACRONYMS
XXIII
INTRODUCTION
XXV
1
MATHEMATICAL
AND
CONTROL
THEORY
BACKGROUND
1
1.1
INTRODUCTION
1
1.2
MODELS
FOR
DYNAMICAL
SYSTEMS
1
1.2.1
DYNAMICAL
SYSTEMS
IN
CONTINUOUS
TIME
1
1.2.2
DYNAMICAL
SYSTEMS
IN
DISCRETE
TIME
2
1.2.3
LINEAR
MODELS
AND
LINEARIZATION
3
1.2.3.1
LINEARIZATION
AT
A
GIVEN
POINT
3
1.2.3.2
LINEARIZING
AROUND
A
TRAJECTORY
6
1.2.4
CONVERTING
BETWEEN
CONTINUOUS
AND
DISCRETE-TIME
MODELS
6
1.2.4.1
TIME
DELAY
IN
THE
MANIPULATED
VARIABLES
7
1.2.4.2
TIME
DELAY
IN
THE
MEASUREMENTS
9
1.2.5
LAPLACE
TRANSFORM
9
1.2.6
THE
Z
TRANSFORM
10
1.2.7
SIMILARITY
TRANSFORMATIONS
11
1.2.8
MINIMAL
REPRESENTATION
11
1.2.9
SCALING
14
1.3
ANALYZING
LINEAR
DYNAMICAL
SYSTEMS
15
1.3.1
TRANSFER
FUNCTIONS
OF
COMPOSITE
SYSTEMS
15
1.3.1.1
SERIES
INTERCONNECTION
15
13.1.2
PARALLEL
SYSTEMS
16
1.3.1.3
FEEDBACK
CONNECTION
16
1.3.1.4
COMMONLY
USED
CLOSED-LOOP
TRANSFER
FUNCTIONS
17
1.3.1.5
THE
PUSH-THROUGH
RULE
17
1.4
POLES
AND
ZEROS
OF
TRANSFER
FUNCTIONS
18
1.4.1
POLES
OF
MULTIVARIABLE
SYSTEMS
19
1.4.2
POLE
DIRECTIONS
19
1.4.3
ZEROS
OF
MULTIVARIABLE
SYSTEMS
20
1.4.4
ZERO
DIRECTIONS
22
VIII
CONTENTS
1.5
1.5.1
1.5.2
1.5.2.1
1.5.3
1.5.3.1
1.5.3.2
1.5.3.3
1.5.4
STABILITY
23
POLES
AND
ZEROS
OF
DISCRETE-TIME
TRANSFER
FUNCTIONS
23
FREQUENCY
ANALYSIS
24
STEADY-STATE
PHASE
ADJUSTMENT
26
BODE
DIAGRAMS
27
BODE
DIAGRAM
ASYMPTOTES
27
MINIMUM
PHASE
SYSTEMS
29
FREQUENCY
ANALYSIS
FOR
DISCRETE-TIME
SYSTEMS
30
ASSESSING
CLOSED-LOOP
STABILITY
USING
THE
OPEN-LOOP
FREQUENCY
RESPONSE
31
1.5.4.1
1.5.4.2
1.5.4.3
1.5.4.4
1.5.4.5
1.5.4.6
1.5.5
1.5.6
1.5.7
1.5.8
1.5.9
1.5.10
1.5.11
1.5.12
1.5.12.1
1.5.12.2
1.5.13
1.5.13.1
1.5.13.2
1.5.14
THE
PRINCIPLE
OF
THE
ARGUMENT
AND
THE
NYQUIST
D-CONTOUR
31
THE
MULTIVARIABLE
NYQUIST
THEOREM
32
THE
MONOVARIABLE
NYQUIST
THEOREM
32
THE
BODE
STABILITY
CRITERION
32
SOME
REMARKS
ON
STABILITY
ANALYSIS
USING
THE
FREQUENCY
RESPONSE
35
THE
SMALL
GAIN
THEOREM
36
CONTROLLABILITY
37
OBSERVABILITY
38
SOME
COMMENTS
ON
CONTROLLABILITY
AND
OBSERVABILITY
39
STABILIZABILITY
40
DETECTABILITY
40
HIDDEN
MODES
41
INTERNAL
STABILITY
41
COPRIME
FACTORIZATIONS
43
INNER-OUTER
FACTORIZATION
44
NORMALIZED
COPRIME
FACTORIZATION
44
PARAMETRIZATION
OF
ALL
STABILIZING
CONTROLLERS
44
STABLE
PLANTS
45
UNSTABLE
PLANTS
45
HANKEL
NORM
AND
HANKEL
SINGULAR
VALUES
46
PROBLEMS
47
REFERENCES
49
2
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10
CONTROL
CONFIGURATION
AND
CONTROLLER
TUNING
51
COMMON
CONTROL
LOOP
STRUCTURES
FOR
THE
REGULATORY
CONTROL
LAYER
51
SIMPLE
FEEDBACK
LOOP
51
FEEDFORWARD
CONTROL
51
RATIO
CONTROL
54
CASCADE
CONTROL
54
AUCTIONEERING
CONTROL
55
SPLIT
RANGE
CONTROL
56
INPUT
RESETTING
CONTROL
57
SELECTIVE
CONTROL
59
COMBINING
BASIC
SINGLE-LOOP
CONTROL
STRUCTURES
60
DECOUPLING
61
CONTENTS
IX
2.2
INPUT
AND
OUTPUT
SELECTION
62
2.2.1
USING
PHYSICAL
INSIGHTS
63
2.2.2
GRAMIAN-BASED
INPUT
AND
OUTPUT
SELECTION
64
2.2.3
INPUT/OUTPUT
SELECTION
FOR
STABILIZATION
65
2.3
CONTROL
CONFIGURATION
66
2.3.1
THE
RELATIVE
GAIN
ARRAY
66
2.3.2
THE
RGA
AS
A
GENERAL
ANALYSIS
TOOL
68
2.3.2.1
THE
RGA
AND
ZEROS
IN
THE
RIGHT
HALF-PLANE
68
23.2.2
THE
RGA
AND
THE
OPTIMALLY
SCALED
CONDITION
NUMBER
68
23.23
THE
RGA
AND
INDIVIDUAL
ELEMENT
UNCERTAINTY
69
2.3.2.
4
RGA
AND
DIAGONAL
INPUT
UNCERTAINTY
69
23.2.5
THE
RGA
AS
AN
INTERACTION
MEASURE
70
2.3.3
THE
RGA
AND
STABILITY
70
2.3.3.1
THE
RGA
AND
PAIRING
OF
CONTROLLED
AND
MANIPULATED
VARIABLES
71
2.3.4
SUMMARY
OF
RGA-BASED
INPUT-OUTPUT
PAIRING
72
2.3.5
PARTIAL
RELATIVE
GAINS
72
2.3.6
THE
NIEDERLINSKI
INDEX
73
23.7
THE
RIJNSDORP
INTERACTION
MEASURE
73
2.3.8
GRAMIAN-BASED
INPUT-OUTPUT
PAIRING
74
2.3
.8.1
THE
PARTICIPATION
MATRIX
75
23.
8.2
THE
HANKEL
INTERACTION
INDEX
ARRAY
75
23.83
ACCOUNTING
FOR
THE
CLOSED-LOOP
BANDWIDTH
76
2.4
TUNING
OF
DECENTRALIZED
CONTROLLERS
76
2.4.1
INTRODUCTION
76
2.4.2
LOOP
SHAPING
BASICS
77
2.4.3
TUNING
OF
SINGLE-LOOP
CONTROLLERS
79
2.4.3.1
PID
CONTROLLER
REALIZATIONS
AND
COMMON
MODIFICATIONS
79
2.4.3.2
CONTROLLER
TUNING
USING
FREQUENCY
ANALYSIS
81
2.4.3.3
ZIEGLER-NICHOLS
CLOSED-LOOP
TUNING
METHOD
86
2.4.3.4
SIMPLE
FITTING
OF
A
STEP
RESPONSE
MODEL
86
2.4.3.5
ZIEGLER-NICHOLS
OPEN-LOOP
TUNING
88
2.4.3.6
IMC-PID
TUNING
88
2.4.3.7
SIMPLE
IMC
TUNING
89
2.4.3.8
THE
SETPOINT OVERSHOOT
METHOD
91
2.4.3.9
AUTOTUNING
95
2.4.3.10
WHEN
SHOULD
DERIVATIVE
ACTION
BE
USED?
95
2.4.3.11
EFFECTS
OF
INTERNAL
CONTROLLER
SCALING
96
2.4.3.12
REVERSE
ACTING
CONTROLLERS
97
2.4.4
GAIN
SCHEDULING
97
2.4.5
SURGE
ATTENUATING
CONTROLLERS
98
2.4.6
MULTILOOP
CONTROLLER
TUNING
99
2.4.6.1
INDEPENDENT
DESIGN
100
2.4.6.2
SEQUENTIAL
DESIGN
102
2.4.6.3
SIMULTANEOUS
DESIGN
103
2.4.7
TOOLS
FOR
MULTIVARIABLE
LOOP-SHAPING
103
X
CONTENTS
2.4.7.1
2.4.7.2
2.4.73
2.4.7.4
THE
PERFORMANCE
RELATIVE
GAIN
ARRAY
103
THE
CLOSED-LOOP
DISTURBANCE
GAIN
104
ILLUSTRATING
THE
USE
OF
CLDG
'
S
FOR
CONTROLLER
TUNING
104
UNACHIEVABLE
LOOP
GAIN
REQUIREMENTS
107
PROBLEMS
108
REFERENCES
112
3
3.1
3.1.1
3.1.1.1
3.1.1.2
3.1.2
3.2
3.2.1
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.3.1
3.43.2
3.4.4
3.4.5
3.4.5.1
3.4.5.2
CONTROL
STRUCTURE
SELECTION
AND
PLANTWIDE
CONTROL
115
GENERAL
APPROACH
AND
PROBLEM DECOMPOSITION
115
TOP-DOWN
ANALYSIS
115
DEFINING
AND
EXPLORING
OPTIMAL
OPERATION
115
DETERMINING
WHERE
TO
SET
THE
THROUGHPUT
116
BOTTOM-UP
DESIGN
116
REGULATORY
CONTROL
117
EXAMPLE:
REGULATORY
CONTROL
OF
LIQUID
LEVEL
IN
A
DEAERATION
TOWER
118
DETERMINING
DEGREES
OF
FREEDOM
121
SELECTION
OF
CONTROLLED
VARIABLES
122
PROBLEM
FORMULATION
123
SELECTING
CONTROLLED
VARIABLES
BY
DIRECT
EVALUATION
OF
LOSS
124
CONTROLLED
VARIABLE
SELECTION
BASED
ON
LOCAL
ANALYSIS
125
THE
MINIMUM
SINGULAR
VALUE
RULE
127
DESIRABLE
CHARACTERISTICS
OF
THE
CONTROLLED
VARIABLES
128
AN
EXACT
LOCAL
METHOD
FOR
CONTROLLED
VARIABLE
SELECTION
128
MEASUREMENT
COMBINATIONS
AS
CONTROLLED
VARIABLES
130
THE
NULLSPACE
METHOD
FOR
SELECTING
CONTROLLED
VARIABLES
130
EXTENDING
THE
NULLSPACE
METHOD
TO
ACCOUNT
FOR
IMPLEMENTATION
ERROR
130
3.4.6
3.5
3.5.1
THE
VALIDITY
OF
THE
LOCAL
ANALYSIS
FOR
CONTROLLED
VARIABLE
SELECTION
131
SELECTION
OF
MANIPULATED
VARIABLES
132
VERIFYING
THAT
THE
PROPOSED
MANIPULATED
VARIABLES
MAKE
ACCEPTABLE
CONTROL
POSSIBLE
133
3.5.2
REVIEWING
THE
CHARACTERISTICS
OF
THE
PROPOSED
MANIPULATED
VARIABLES
134
3.6
3.7
3.7.1
SELECTION
OF
MEASUREMENTS
135
MASS
BALANCE
CONTROL
AND
THROUGHPUT
MANIPULATION
136
CONSISTENCY
OF
INVENTORY
CONTROL
138
PROBLEMS
140
REFERENCES
141
4
4.1
4.1.1
4.1.2
4.1.2.1
4.1.2.2
LIMITATIONS
ON
ACHIEVABLE
PERFORMANCE
143
PERFORMANCE
MEASURES
143
TIME-DOMAIN
PERFORMANCE
MEASURES
143
FREQUENCY-DOMAIN
PERFORMANCE
MEASURES
145
BANDWIDTH
FREQUENCY
145
PEAKS
OF
CLOSED-LOOP
TRANSFER
FUNCTIONS
146
CONTENTS
XI
4.1.2.3
4.1.2.4
4.2
4.2.1
4.2.2
4.2.2.1
4.2.2.2
4.3
4.3.1
4.3.1.1
4.3.2
4.3.3
4.3.4
4.4
4.4.1
4.4.1.1
4.4.2
4.4.3
4.4.3.1
4.4.3.2
4.4.4
4.5
4.6
4.6.1
4.6.2
4.6.3
4.7
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.9
4.9.1
4.9.2
4.9.3
4.9.4
BOUNDS
ON
WEIGHTED
SYSTEM
NORMS
146
GAIN
AND
PHASE
MARGIN
147
ALGEBRAIC
LIMITATIONS
148
S+T
=
L
148
INTERPOLATION
CONSTRAINTS
148
MONOVARIABLE
SYSTEMS
148
MULTIVARIABLE
SYSTEMS
149
CONTROL
PERFORMANCE
IN
DIFFERENT
FREQUENCY
RANGES
149
SENSITIVITY
INTEGRALS
AND
RIGHT
HALF-PLANE
ZEROS
149
MULTIVARIABLE
SYSTEMS
150
SENSITIVITY
INTEGRALS
AND
RIGHT
HALF-PLANE
POLES
150
COMBINED
EFFECTS
OF
RHP
POLES
AND
ZEROS
150
IMPLICATIONS
OF
THE
SENSITIVITY
INTEGRAL
RESULTS
150
BOUNDS
ON
CLOSED-LOOP
TRANSFER
FUNCTIONS
151
THE
MAXIMUM MODULUS
PRINCIPLE
152
THE
MAXIMUM
MODULUS
PRINCIPLE
152
MINIMUM
PHASE
AND
STABLE
VERSIONS
OF
THE
PLANT
152
BOUNDS
ON
S
AND
T
153
MONOVARIABLE
SYSTEMS
153
MULTIVARIABLE
SYSTEMS
153
BOUNDS
ON
KS
AND
KSG
D
154
ISE
OPTIMAL
CONTROL
156
BANDWIDTH
AND
CROSSOVER
FREQUENCY
LIMITATIONS
156
BOUNDS
FROM
ISE
OPTIMAL
CONTROL
156
BANDWIDTH
BOUNDS
FROM
WEIGHTED
SENSITIVITY
MINIMIZATION
157
BOUND
FROM
NEGATIVE
PHASE
158
BOUNDS
ON
THE
STEP
RESPONSE
158
BOUNDS
FOR
DISTURBANCE
REJECTION
160
INPUTS
FOR
PERFECT
CONTROL
161
INPUTS
FOR
ACCEPTABLE
CONTROL
161
DISTURBANCES
AND
RHP
ZEROS
161
DISTURBANCES
AND
STABILIZATION
162
LIMITATIONS
FROM
PLANT
UNCERTAINTY
164
DESCRIBING
UNCERTAINTY
165
FEEDFORWARD
CONTROL
AND THE
EFFECTS
OF
UNCERTAINTY
166
FEEDBACK
AND
THE
EFFECTS
OF
UNCERTAINTY
167
BANDWIDTH
LIMITATIONS
FROM
UNCERTAINTY
168
PROBLEMS
168
REFERENCES
170
5
5.1
5.2
5.2.1
5.2.2
MODEL-BASED
PREDICTIVE
CONTROL
173
INTRODUCTION
173
FORMULATION
OF
A
QP
PROBLEM
FOR
MPC
175
FUTURE
STATES
AS
OPTIMIZATION
VARIABLES
179
USING
THE
MODEL
EQUATION
TO
SUBSTITUTE
FOR
THE
PLANT
STATES
180
XII
J
CONTENTS
5.2.3
OPTIMIZING
DEVIATIONS
FROM
LINEAR
STATE
FEEDBACK
181
5.2.4
CONSTRAINTS
BEYOND
THE
END
OF
THE
PREDICTION
HORIZON
182
5.2.5
FINDING
THE
TERMINAL
CONSTRAINT
SET
183
5.2.6
FEASIBLE
REGION
AND
PREDICTION
HORIZON
184
5.3
STEP-RESPONSE
MODELS
185
5.4
UPDATING
THE
PROCESS
MODEL
186
5.4.1
BIAS
UPDATE
186
5.4.2
KALMAN
FILTER
AND
EXTENDED
KALMAN
FILTERS
187
5.4.2.1
AUGMENTING
A
DISTURBANCE
DESCRIPTION
188
5.4.2.2
THE
EXTENDED
KALMAN
FILTER
189
5.4.2.3
THE
ITERATED
EXTENDED
KALMAN
FILTER
189
5.4.3
UNSCENTED
KALMAN
FILTER
190
5.4.4
RECEDING
HORIZON
ESTIMATION
193
5.4.4.1
THE
ARRIVAL
COST
195
5.4.4.2
THE
FILTERING
FORMULATION
OF
RHE
196
5.4.4.3
THE
SMOOTHING
FORMULATION
OF
RHE
196
5.4.5
CONCLUDING
COMMENTS
ON
STATE
ESTIMATION
198
5.5
DISTURBANCE
HANDLING
AND
OFFSET-FREE
CONTROL
199
5.5.1
FEEDFORWARD
FROM
MEASURED
DISTURBANCES
199
5.5.2
REQUIREMENTS
FOR
OFFSET-FREE
CONTROL
199
5.5.3
DISTURBANCE
ESTIMATION
AND
OFFSET-FREE
CONTROL
200
5.5.4
AUGMENTING
THE
MODEL
WITH
INTEGRATORS
AT
THE
PLANT
INPUT
203
5.5.5
AUGMENTING
THE
MODEL
WITH
INTEGRATORS
AT
THE
PLANT
OUTPUT
205
5.5.6
MPC
AND
INTEGRATOR
RESETTING
208
5.6
FEASIBILITY
AND
CONSTRAINT
HANDLING
210
5.7
CLOSED-LOOP
STABILITY
WITH
MPC
CONTROLLERS
212
5.8
TARGET
CALCULATION
213
5.9
SPEEDING
UP
MPC
CALCULATIONS
217
5.9.1
WARM-STARTING
THE
OPTIMIZATION
218
5.9.2
INPUT
BLOCKING
219
5.9.3
ENLARGING
THE
TERMINAL
REGION
220
5.10
ROBUSTNESS
OF
MPC
CONTROLLERS
222
5.11
USING
RIGOROUS
PROCESS
MODELS
IN
MPC
225
5.12
MISCONCEPTIONS,
CLARIFICATIONS,
AND
CHALLENGES
226
5.12.1
MISCONCEPTIONS
226
5.12.1.1
MPC
IS
NOT
GOOD
FOR PERFORMANCE
226
5.12.1.2
MPC
REQUIRES
VERY
ACCURATE
MODELS
227
5.12.1.3
MPC
CANNOT
PRIORITIZE
INPUT
USAGE
OR
CONSTRAINT
VIOLATIONS
227
5.12.2
CHALLENGES
227
5.12.2.1
OBTAINING
A
PLANT
MODEL
228
5.12.2.2
MAINTENANCE
228
5.12.2.3
CAPTURING
THE
DESIRED
BEHAVIOR
IN
THE
MPC
DESIGN
228
PROBLEMS
228
REFERENCES
231
CONTENTS
XIII
6
6.1
6.1.1
6.1.2
6.1.3
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.4
6.4.1
6.4.2
SOME
PRACTICAL
ISSUES
IN
CONTROLLER
IMPLEMENTATION
233
DISCRETE-TIME
IMPLEMENTATION
233
ALIASING
233
SAMPLING
INTERVAL
233
EXECUTION
ORDER
235
PURE
INTEGRATORS
IN
PARALLEL
235
ANTI-WINDUP
236
SIMPLE
PI
CONTROL
ANTI-WINDUP
237
VELOCITY
FORM
OF
PI
CONTROLLERS
237
ANTI-WINDUP
IN
CASCADED
CONTROL
SYSTEMS
238
A
GENERAL
ANTI-WINDUP
FORMULATION
239
HANNS
'
SELF-CONDITIONED
FORM
240
ANTI-WINDUP
IN
OBSERVER-BASED
CONTROLLERS
241
DECOUPLING
AND
INPUT
CONSTRAINTS
243
ANTI-WINDUP
FOR
"
NORMALLY
CLOSED
"
CONTROLLERS
244
BUMPLESS
TRANSFER
245
SWITCHING
BETWEEN
MANUAL
AND
AUTOMATIC
OPERATION
245
CHANGING
CONTROLLER
PARAMETERS
246
PROBLEMS
246
REFERENCES
247
7
7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.3
7.3.1
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
CONTROLLER
PERFORMANCE
MONITORING
AND
DIAGNOSIS
249
INTRODUCTION
249
DETECTION
OF
OSCILLATING
CONTROL
LOOPS
251
THE
AUTOCORRELATION
FUNCTION
251
THE
POWER
SPECTRUM
252
THE
METHOD
OF
MIAO
AND
SEBORG
252
THE
METHOD
OF
HAGGLUND
253
THE
REGULARITY
INDEX
254
THE
METHOD
OF
FORSMAN
AND
STATTIN
255
PREFILTERING
DATA
255
OSCILLATION
DIAGNOSIS
256
MANUAL
OSCILLATION
DIAGNOSIS
256
DETECTING
AND
DIAGNOSING
VALVE
STICTION
257
USING
THE
CROSS-CORRELATION
FUNCTION
TO
DETECT
VALVE
STICTION
257
HISTOGRAMS
FOR
DETECTING
VALVE
STICTION
258
STICTION
DETECTION
USING
AN
OP-PV
PLOT
260
STICTION
COMPENSATION
262
DETECTION
OF
BACKLASH
263
BACKLASH
COMPENSATION
264
SIMULTANEOUS
STICTION
AND
BACKLASH
DETECTION
265
DISCRIMINATING
BETWEEN
EXTERNAL
AND
INTERNALLY
GENERATED
OSCILLATIONS
266
7.3.8
DETECTING
AND
DIAGNOSING
OTHER
NONLINEARITIES
266
XIV
CONTENTS
7.4
PLANTWIDE
OSCILLATIONS
269
7.4.1
GROUPING
OSCILLATING
VARIABLES
269
7.4.1.1
SPECTRAL
PRINCIPAL
COMPONENT
ANALYSIS
269
7.4.1.2
VISUAL
INSPECTION
USING
HIGH-DENSITY
PLOTS
269
1A.13
POWER
SPECTRAL
CORRELATION
MAPS
270
7.4.1.4
THE
SPECTRAL
ENVELOPE
METHOD
271
7.4.1.5
METHODS
BASED
ON
ADAPTIVE
DATA
ANALYSIS
272
7.4.2
LOCATING
THE
CAUSE
FOR
DISTRIBUTED
OSCILLATIONS
273
7.4.2.1
USING
NONLINEARITY
FOR
ROOT
CAUSE
LOCATION
273
7.4.2.2
THE
OSCILLATION
CONTRIBUTION
INDEX
273
7.4.23
ESTIMATING
THE
PROPAGATION
PATH
FOR
DISTURBANCES
274
7.5
CONTROL
LOOP
PERFORMANCE
MONITORING
278
7.5.1
THE
HARRIS
INDEX
278
7.5.2
OBTAINING
THE
IMPULSE
RESPONSE
MODEL
279
7.5.3
CALCULATING
THE
HARRIS
INDEX
280
7.5.4
ESTIMATING
THE
DEADTIME
281
7.5.5
MODIFICATIONS
TO
THE
HARRIS
INDEX
282
7.5.6
ASSESSING
FEEDFORWARD
CONTROL
283
7.5.7
COMMENTS
ON
THE
USE
OF
THE
HARRIS
INDEX
285
7.5.8
PERFORMANCE
MONITORING
FOR
PI
CONTROLLERS
286
7.6
MULTIVARIABLE
CONTROL
PERFORMANCE
MONITORING
287
7.6.1
ASSESSING
FEEDFORWARD
CONTROL
IN
MULTIVARIABLE
CONTROL
287
7.6.2
PERFORMANCE
MONITORING
FOR
MPC
CONTROLLERS
288
7.7
SOME
ISSUES
IN THE
IMPLEMENTATION
OF
CONTROL
PERFORMANCE
MONITORING
290
7.8
DISCUSSION
290
PROBLEMS
291
REFERENCES
291
8
ECONOMIC
CONTROL
BENEFIT
ASSESSMENT
297
8.1
OPTIMAL
OPERATION
AND
OPERATIONAL
CONSTRAINTS
297
8.2
ECONOMIC
PERFORMANCE
FUNCTIONS
298
8.3
EXPECTED
ECONOMIC
BENEFIT
299
8.4
ESTIMATING
ACHIEVABLE
VARIANCE
REDUCTION
300
8.5
WORST-CASE
BACKOFF
CALCULATION
300
REFERENCES
301
A
FOURIER-MOTZKIN
ELIMINATION
303
B
REMOVAL
OF
REDUNDANT
CONSTRAINTS
307
REFERENCE
308
C
THE
SINGULAR
VALUE
DECOMPOSITION
309
CONTENTS
XV
D
FACTORIZATION
OF
TRANSFER
FUNCTIONS
INTO
MINIMUM
PHASE
STABLE
AND
ALL-PASS
PARTS
311
D.1
D.2
D.3
D.4
D.5
D.6
INPUT
FACTORIZATION
OF
RHP
ZEROS
312
OUTPUT
FACTORIZATION
OF
RHP
ZEROS
312
OUTPUT
FACTORIZATION
OF
RHP
POLES
313
INPUT
FACTORIZATION
OF
RHP
POLES
313
SISO
SYSTEMS
314
FACTORING
OUT
BOTH
RHP
POLES
AND
RHP
ZEROS
314
REFERENCE
314
E
E.1
E.2
MODELS
USED
IN
EXAMPLES
315
BINARY
DISTILLATION
COLUMN
MODEL
315
FLUID
CATALYTIC
CRACKER
MODEL
318
REFERENCES
320
INDEX
321 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Hovd, Morten |
author_facet | Hovd, Morten |
author_role | aut |
author_sort | Hovd, Morten |
author_variant | m h mh |
building | Verbundindex |
bvnumber | BV049097727 |
ctrlnum | (OCoLC)1401183431 (DE-599)DNB1280080434 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03237nam a22007818c 4500</leader><controlfield tag="001">BV049097727</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230825 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230810s2023 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,N06</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1280080434</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527352234</subfield><subfield code="c">: EUR 119.00 (DE) (freier Preis), EUR 122.40 (AT) (freier Preis)</subfield><subfield code="9">978-3-527-35223-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527352234</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1135223 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1401183431</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1280080434</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">540</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hovd, Morten</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced chemical process control</subfield><subfield code="b">putting theory into practice</subfield><subfield code="c">Morten Hovd</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxv, 326 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24.4 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellprädiktive Regelung</subfield><subfield code="0">(DE-588)1135937567</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prozessregelung</subfield><subfield code="0">(DE-588)4222919-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prozesssteuerung</subfield><subfield code="0">(DE-588)4047594-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prozessüberwachung</subfield><subfield code="0">(DE-588)4133922-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CG10: Prozesssteuerung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CH30: Technische u. Industrielle Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemische Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Control Process & Measurements</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Industrial Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ME50: Mess- u. Regeltechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Maschinenbau</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mechanical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mess- u. Regeltechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Process Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Prozesssteuerung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Technische u. Industrielle Chemie</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Prozessüberwachung</subfield><subfield code="0">(DE-588)4133922-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Prozesssteuerung</subfield><subfield code="0">(DE-588)4047594-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Prozessregelung</subfield><subfield code="0">(DE-588)4222919-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Modellprädiktive Regelung</subfield><subfield code="0">(DE-588)1135937567</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Prozessüberwachung</subfield><subfield code="0">(DE-588)4133922-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-84247-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-84248-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, oBook</subfield><subfield code="z">978-3-527-84249-0</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35223-4/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034359315&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034359315</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20230204</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
id | DE-604.BV049097727 |
illustrated | Illustrated |
index_date | 2024-07-03T22:31:48Z |
indexdate | 2024-07-10T09:55:15Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527352234 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034359315 |
oclc_num | 1401183431 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xxxv, 326 Seiten Illustrationen 24.4 cm x 17 cm |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Hovd, Morten Verfasser aut Advanced chemical process control putting theory into practice Morten Hovd Weinheim Wiley-VCH [2023] xxxv, 326 Seiten Illustrationen 24.4 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier Chemische Verfahrenstechnik (DE-588)4069941-9 gnd rswk-swf Modellprädiktive Regelung (DE-588)1135937567 gnd rswk-swf Prozessregelung (DE-588)4222919-4 gnd rswk-swf Prozesssteuerung (DE-588)4047594-3 gnd rswk-swf Kontrolltheorie (DE-588)4032317-1 gnd rswk-swf Prozessüberwachung (DE-588)4133922-8 gnd rswk-swf CG10: Prozesssteuerung CH30: Technische u. Industrielle Chemie Chemical Engineering Chemie Chemische Verfahrenstechnik Chemistry Control Process & Measurements Industrial Chemistry ME50: Mess- u. Regeltechnik Maschinenbau Mechanical Engineering Mess- u. Regeltechnik Process Engineering Prozesssteuerung Technische u. Industrielle Chemie Chemische Verfahrenstechnik (DE-588)4069941-9 s Prozessüberwachung (DE-588)4133922-8 s Kontrolltheorie (DE-588)4032317-1 s DE-604 Prozesssteuerung (DE-588)4047594-3 s Prozessregelung (DE-588)4222919-4 s Modellprädiktive Regelung (DE-588)1135937567 s Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-84247-6 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-84248-3 Erscheint auch als Online-Ausgabe, oBook 978-3-527-84249-0 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35223-4/ DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034359315&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20230204 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Hovd, Morten Advanced chemical process control putting theory into practice Chemische Verfahrenstechnik (DE-588)4069941-9 gnd Modellprädiktive Regelung (DE-588)1135937567 gnd Prozessregelung (DE-588)4222919-4 gnd Prozesssteuerung (DE-588)4047594-3 gnd Kontrolltheorie (DE-588)4032317-1 gnd Prozessüberwachung (DE-588)4133922-8 gnd |
subject_GND | (DE-588)4069941-9 (DE-588)1135937567 (DE-588)4222919-4 (DE-588)4047594-3 (DE-588)4032317-1 (DE-588)4133922-8 |
title | Advanced chemical process control putting theory into practice |
title_auth | Advanced chemical process control putting theory into practice |
title_exact_search | Advanced chemical process control putting theory into practice |
title_exact_search_txtP | Advanced chemical process control putting theory into practice |
title_full | Advanced chemical process control putting theory into practice Morten Hovd |
title_fullStr | Advanced chemical process control putting theory into practice Morten Hovd |
title_full_unstemmed | Advanced chemical process control putting theory into practice Morten Hovd |
title_short | Advanced chemical process control |
title_sort | advanced chemical process control putting theory into practice |
title_sub | putting theory into practice |
topic | Chemische Verfahrenstechnik (DE-588)4069941-9 gnd Modellprädiktive Regelung (DE-588)1135937567 gnd Prozessregelung (DE-588)4222919-4 gnd Prozesssteuerung (DE-588)4047594-3 gnd Kontrolltheorie (DE-588)4032317-1 gnd Prozessüberwachung (DE-588)4133922-8 gnd |
topic_facet | Chemische Verfahrenstechnik Modellprädiktive Regelung Prozessregelung Prozesssteuerung Kontrolltheorie Prozessüberwachung |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35223-4/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034359315&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hovdmorten advancedchemicalprocesscontrolputtingtheoryintopractice AT wileyvch advancedchemicalprocesscontrolputtingtheoryintopractice |