Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I:
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer Nature Singapore
2023
Singapore Springer |
Ausgabe: | 1st ed. 2023 |
Schriftenreihe: | SpringerBriefs in Mathematical Physics
44 |
Schlagworte: | |
Online-Zugang: | BTU01 FHD01 FHN01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBM01 UBT01 UBW01 UBY01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (IX, 68 p. 16 illus., 14 illus. in color) |
ISBN: | 9789811946455 |
ISSN: | 2197-1765 |
DOI: | 10.1007/978-981-19-4645-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV049083282 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230801s2023 |||| o||u| ||||||eng d | ||
020 | |a 9789811946455 |c Online |9 978-981-1946-45-5 | ||
024 | 7 | |a 10.1007/978-981-19-4645-5 |2 doi | |
035 | |a (ZDB-2-SMA)9789811946455 | ||
035 | |a (OCoLC)1392140533 | ||
035 | |a (DE-599)BVBBV049083282 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-188 |a DE-523 |a DE-863 |a DE-1050 |a DE-20 |a DE-862 |a DE-92 |a DE-824 |a DE-703 |a DE-706 |a DE-739 |a DE-634 | ||
082 | 0 | |a 530.15 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Lentner, Simon |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I |c by Simon Lentner, Svea Nora Mierach, Christoph Schweigert, Yorck Sommerhäuser |
250 | |a 1st ed. 2023 | ||
264 | 1 | |a Singapore |b Springer Nature Singapore |c 2023 | |
264 | 1 | |a Singapore |b Springer | |
300 | |a 1 Online-Ressource (IX, 68 p. 16 illus., 14 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a SpringerBriefs in Mathematical Physics |v 44 |x 2197-1765 | |
650 | 4 | |a Mathematical Physics | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Category Theory, Homological Algebra | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Algebra, Homological | |
700 | 1 | |a Mierach, Svea Nora |4 aut | |
700 | 1 | |a Schweigert, Christoph |4 aut | |
700 | 1 | |a Sommerhäuser, Yorck |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-981-1946-44-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-981-1946-46-2 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-981-19-4645-5 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2023 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034345163 | ||
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l FHD01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l FHN01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l UBY01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-4645-5 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 1049795 |
---|---|
_version_ | 1806175333385240576 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Lentner, Simon Mierach, Svea Nora Schweigert, Christoph Sommerhäuser, Yorck |
author_facet | Lentner, Simon Mierach, Svea Nora Schweigert, Christoph Sommerhäuser, Yorck |
author_role | aut aut aut aut |
author_sort | Lentner, Simon |
author_variant | s l sl s n m sn snm c s cs y s ys |
building | Verbundindex |
bvnumber | BV049083282 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9789811946455 (OCoLC)1392140533 (DE-599)BVBBV049083282 |
dewey-full | 530.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15 |
dewey-search | 530.15 |
dewey-sort | 3530.15 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
doi_str_mv | 10.1007/978-981-19-4645-5 |
edition | 1st ed. 2023 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03352nmm a2200685zcb4500</leader><controlfield tag="001">BV049083282</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230801s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811946455</subfield><subfield code="c">Online</subfield><subfield code="9">978-981-1946-45-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-981-19-4645-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9789811946455</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392140533</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049083282</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lentner, Simon</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I</subfield><subfield code="c">by Simon Lentner, Svea Nora Mierach, Christoph Schweigert, Yorck Sommerhäuser</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2023</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer Nature Singapore</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 68 p. 16 illus., 14 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">SpringerBriefs in Mathematical Physics</subfield><subfield code="v">44</subfield><subfield code="x">2197-1765</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category Theory, Homological Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra, Homological</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mierach, Svea Nora</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schweigert, Christoph</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sommerhäuser, Yorck</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-981-1946-44-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-981-1946-46-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2023</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034345163</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-4645-5</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049083282 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:28:11Z |
indexdate | 2024-08-01T11:03:46Z |
institution | BVB |
isbn | 9789811946455 |
issn | 2197-1765 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034345163 |
oclc_num | 1392140533 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-703 DE-706 DE-739 DE-634 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-703 DE-706 DE-739 DE-634 |
physical | 1 Online-Ressource (IX, 68 p. 16 illus., 14 illus. in color) |
psigel | ZDB-2-SMA ZDB-2-SMA_2023 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Springer Nature Singapore Springer |
record_format | marc |
series2 | SpringerBriefs in Mathematical Physics |
spellingShingle | Lentner, Simon Mierach, Svea Nora Schweigert, Christoph Sommerhäuser, Yorck Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I Mathematical Physics Algebraic Topology Category Theory, Homological Algebra Mathematical physics Algebraic topology Algebra, Homological |
title | Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I |
title_auth | Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I |
title_exact_search | Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I |
title_exact_search_txtP | Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I |
title_full | Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I by Simon Lentner, Svea Nora Mierach, Christoph Schweigert, Yorck Sommerhäuser |
title_fullStr | Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I by Simon Lentner, Svea Nora Mierach, Christoph Schweigert, Yorck Sommerhäuser |
title_full_unstemmed | Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I by Simon Lentner, Svea Nora Mierach, Christoph Schweigert, Yorck Sommerhäuser |
title_short | Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I |
title_sort | hochschild cohomology modular tensor categories and mapping class groups i |
topic | Mathematical Physics Algebraic Topology Category Theory, Homological Algebra Mathematical physics Algebraic topology Algebra, Homological |
topic_facet | Mathematical Physics Algebraic Topology Category Theory, Homological Algebra Mathematical physics Algebraic topology Algebra, Homological |
url | https://doi.org/10.1007/978-981-19-4645-5 |
work_keys_str_mv | AT lentnersimon hochschildcohomologymodulartensorcategoriesandmappingclassgroupsi AT mierachsveanora hochschildcohomologymodulartensorcategoriesandmappingclassgroupsi AT schweigertchristoph hochschildcohomologymodulartensorcategoriesandmappingclassgroupsi AT sommerhauseryorck hochschildcohomologymodulartensorcategoriesandmappingclassgroupsi |