Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues:
This paper proposes monetary poverty and inequality estimates for Kinshasa using a new Kinshasa household survey implemented in 2018. Given the obsolescence of the sampling frame, the survey was sampled using satellite imagery. However, the collection of data in the field was affected by sampling er...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2021
|
Schlagworte: | |
Online-Zugang: | kostenfrei |
Zusammenfassung: | This paper proposes monetary poverty and inequality estimates for Kinshasa using a new Kinshasa household survey implemented in 2018. Given the obsolescence of the sampling frame, the survey was sampled using satellite imagery. However, the collection of data in the field was affected by sampling errors that are likely to compromise the representativeness of the sample. After addressing these sampling issues and dealing with some comparability issues with the 2012 survey, the paper shows that poverty and inequality increased significantly during 2012-18 in Kinshasa. Poverty has increased in the city by 12 percentage points, from 53 to 65 percent, partly due to the loss of purchasing power following the sharp depreciation in 2017. Other explanatory factors include demographic factors, human capital, and spatial factors. The deterioration in well-being also appears to have been exacerbated by the onset of the COVID-19 pandemic through decline in labor and nonlabor income and disruptions in goods and services markets and public services |
Beschreibung: | 1 Online-Ressource (42 Seiten) |
DOI: | 10.1596/1813-9450-9858 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049080776 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230731s2021 xxu|||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-9858 |2 doi | |
035 | |a (ZDB-1-WBA)076553310 | ||
035 | |a (OCoLC)1392148445 | ||
035 | |a (DE-599)KEP076553310 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Batana, Yele Maweki |e Verfasser |4 aut | |
245 | 1 | 0 | |a Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues |c Yele Maweki Batana |
264 | 1 | |a Washington, D.C |b The World Bank |c 2021 | |
300 | |a 1 Online-Ressource (42 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a This paper proposes monetary poverty and inequality estimates for Kinshasa using a new Kinshasa household survey implemented in 2018. Given the obsolescence of the sampling frame, the survey was sampled using satellite imagery. However, the collection of data in the field was affected by sampling errors that are likely to compromise the representativeness of the sample. After addressing these sampling issues and dealing with some comparability issues with the 2012 survey, the paper shows that poverty and inequality increased significantly during 2012-18 in Kinshasa. Poverty has increased in the city by 12 percentage points, from 53 to 65 percent, partly due to the loss of purchasing power following the sharp depreciation in 2017. Other explanatory factors include demographic factors, human capital, and spatial factors. The deterioration in well-being also appears to have been exacerbated by the onset of the COVID-19 pandemic through decline in labor and nonlabor income and disruptions in goods and services markets and public services | |
650 | 4 | |a Comparability Issues | |
650 | 4 | |a Coronavirus | |
650 | 4 | |a COVID-19 | |
650 | 4 | |a Inequality | |
650 | 4 | |a Poverty Lines | |
650 | 4 | |a Poverty Map | |
650 | 4 | |a Poverty Measurement | |
650 | 4 | |a Poverty Reduction | |
650 | 4 | |a Propensity Score | |
650 | 4 | |a Robustness Analysis | |
650 | 4 | |a Sampling Errors | |
650 | 4 | |a Urban Poverty | |
700 | 1 | |a Masaki, Takaaki |e Sonstige |4 oth | |
700 | 1 | |a Nakamura, Shohei |e Sonstige |4 oth | |
700 | 1 | |a Viboudoulou Vilpoux, Mervy Ever |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-9858 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034342666 |
Datensatz im Suchindex
_version_ | 1812671843185721344 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Batana, Yele Maweki |
author_facet | Batana, Yele Maweki |
author_role | aut |
author_sort | Batana, Yele Maweki |
author_variant | y m b ym ymb |
building | Verbundindex |
bvnumber | BV049080776 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)076553310 (OCoLC)1392148445 (DE-599)KEP076553310 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-9858 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV049080776</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2021 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-9858</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)076553310</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392148445</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP076553310</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Batana, Yele Maweki</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues</subfield><subfield code="c">Yele Maweki Batana</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (42 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This paper proposes monetary poverty and inequality estimates for Kinshasa using a new Kinshasa household survey implemented in 2018. Given the obsolescence of the sampling frame, the survey was sampled using satellite imagery. However, the collection of data in the field was affected by sampling errors that are likely to compromise the representativeness of the sample. After addressing these sampling issues and dealing with some comparability issues with the 2012 survey, the paper shows that poverty and inequality increased significantly during 2012-18 in Kinshasa. Poverty has increased in the city by 12 percentage points, from 53 to 65 percent, partly due to the loss of purchasing power following the sharp depreciation in 2017. Other explanatory factors include demographic factors, human capital, and spatial factors. The deterioration in well-being also appears to have been exacerbated by the onset of the COVID-19 pandemic through decline in labor and nonlabor income and disruptions in goods and services markets and public services</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Comparability Issues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coronavirus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Lines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Propensity Score</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robustness Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sampling Errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban Poverty</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Masaki, Takaaki</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakamura, Shohei</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Viboudoulou Vilpoux, Mervy Ever</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-9858</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034342666</subfield></datafield></record></collection> |
id | DE-604.BV049080776 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:27:58Z |
indexdate | 2024-10-12T04:03:00Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034342666 |
oclc_num | 1392148445 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (42 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | The World Bank |
record_format | marc |
spellingShingle | Batana, Yele Maweki Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues Comparability Issues Coronavirus COVID-19 Inequality Poverty Lines Poverty Map Poverty Measurement Poverty Reduction Propensity Score Robustness Analysis Sampling Errors Urban Poverty |
title | Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues |
title_auth | Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues |
title_exact_search | Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues |
title_exact_search_txtP | Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues |
title_full | Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues Yele Maweki Batana |
title_fullStr | Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues Yele Maweki Batana |
title_full_unstemmed | Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues Yele Maweki Batana |
title_short | Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues |
title_sort | estimating poverty in kinshasa by dealing with sampling and comparability issues |
topic | Comparability Issues Coronavirus COVID-19 Inequality Poverty Lines Poverty Map Poverty Measurement Poverty Reduction Propensity Score Robustness Analysis Sampling Errors Urban Poverty |
topic_facet | Comparability Issues Coronavirus COVID-19 Inequality Poverty Lines Poverty Map Poverty Measurement Poverty Reduction Propensity Score Robustness Analysis Sampling Errors Urban Poverty |
url | https://doi.org/10.1596/1813-9450-9858 |
work_keys_str_mv | AT batanayelemaweki estimatingpovertyinkinshasabydealingwithsamplingandcomparabilityissues AT masakitakaaki estimatingpovertyinkinshasabydealingwithsamplingandcomparabilityissues AT nakamurashohei estimatingpovertyinkinshasabydealingwithsamplingandcomparabilityissues AT viboudoulouvilpouxmervyever estimatingpovertyinkinshasabydealingwithsamplingandcomparabilityissues |