Nowcasting Global Poverty:
This paper evaluates different methods for nowcasting country-level poverty rates, including methods that apply statistical learning to large-scale country-level data obtained from the World Development Indicators and Google Earth Engine. The methods are evaluated by withholding measured poverty rat...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2021
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This paper evaluates different methods for nowcasting country-level poverty rates, including methods that apply statistical learning to large-scale country-level data obtained from the World Development Indicators and Google Earth Engine. The methods are evaluated by withholding measured poverty rates and determining how accurately the methods predict the held-out data. A simple approach that scales the last observed welfare distribution by a fraction of real GDP per capita growth-a method that departs slightly from current World Bank practice-performs nearly as well as models using statistical learning on 1,000+ variables. This GDP-based approach outperforms all models that predict poverty rates directly, even when the last survey is up to five years old. The results indicate that in this context, the additional complexity introduced by applying statistical learning techniques to a large set of variables yields only marginal improvements in accuracy |
Beschreibung: | 1 Online-Ressource (44 Seiten) |
DOI: | 10.1596/1813-9450-9860 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049080774 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230731s2021 xxu|||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-9860 |2 doi | |
035 | |a (ZDB-1-WBA)076553337 | ||
035 | |a (OCoLC)1392138942 | ||
035 | |a (DE-599)KEP076553337 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Mahler, Daniel Gerszon |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nowcasting Global Poverty |c Daniel Gerszon Mahler |
264 | 1 | |a Washington, D.C |b The World Bank |c 2021 | |
300 | |a 1 Online-Ressource (44 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a This paper evaluates different methods for nowcasting country-level poverty rates, including methods that apply statistical learning to large-scale country-level data obtained from the World Development Indicators and Google Earth Engine. The methods are evaluated by withholding measured poverty rates and determining how accurately the methods predict the held-out data. A simple approach that scales the last observed welfare distribution by a fraction of real GDP per capita growth-a method that departs slightly from current World Bank practice-performs nearly as well as models using statistical learning on 1,000+ variables. This GDP-based approach outperforms all models that predict poverty rates directly, even when the last survey is up to five years old. The results indicate that in this context, the additional complexity introduced by applying statistical learning techniques to a large set of variables yields only marginal improvements in accuracy | |
650 | 4 | |a Inequality | |
650 | 4 | |a Machine Learning | |
650 | 4 | |a Nowcasting | |
650 | 4 | |a Poverty | |
650 | 4 | |a Poverty Lines | |
650 | 4 | |a Poverty Measurement | |
650 | 4 | |a Poverty Monitoring and Analysis | |
650 | 4 | |a Poverty Reduction | |
700 | 1 | |a Castaneda Aguilar, R. Andres |e Sonstige |4 oth | |
700 | 1 | |a Newhouse, David |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-9860 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034342664 |
Datensatz im Suchindex
_version_ | 1812671843176284160 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Mahler, Daniel Gerszon |
author_facet | Mahler, Daniel Gerszon |
author_role | aut |
author_sort | Mahler, Daniel Gerszon |
author_variant | d g m dg dgm |
building | Verbundindex |
bvnumber | BV049080774 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)076553337 (OCoLC)1392138942 (DE-599)KEP076553337 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-9860 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV049080774</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2021 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-9860</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)076553337</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392138942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP076553337</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mahler, Daniel Gerszon</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nowcasting Global Poverty</subfield><subfield code="c">Daniel Gerszon Mahler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (44 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This paper evaluates different methods for nowcasting country-level poverty rates, including methods that apply statistical learning to large-scale country-level data obtained from the World Development Indicators and Google Earth Engine. The methods are evaluated by withholding measured poverty rates and determining how accurately the methods predict the held-out data. A simple approach that scales the last observed welfare distribution by a fraction of real GDP per capita growth-a method that departs slightly from current World Bank practice-performs nearly as well as models using statistical learning on 1,000+ variables. This GDP-based approach outperforms all models that predict poverty rates directly, even when the last survey is up to five years old. The results indicate that in this context, the additional complexity introduced by applying statistical learning techniques to a large set of variables yields only marginal improvements in accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nowcasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Lines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Monitoring and Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Reduction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Castaneda Aguilar, R. Andres</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Newhouse, David</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-9860</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034342664</subfield></datafield></record></collection> |
id | DE-604.BV049080774 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:27:58Z |
indexdate | 2024-10-12T04:03:00Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034342664 |
oclc_num | 1392138942 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (44 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | The World Bank |
record_format | marc |
spellingShingle | Mahler, Daniel Gerszon Nowcasting Global Poverty Inequality Machine Learning Nowcasting Poverty Poverty Lines Poverty Measurement Poverty Monitoring and Analysis Poverty Reduction |
title | Nowcasting Global Poverty |
title_auth | Nowcasting Global Poverty |
title_exact_search | Nowcasting Global Poverty |
title_exact_search_txtP | Nowcasting Global Poverty |
title_full | Nowcasting Global Poverty Daniel Gerszon Mahler |
title_fullStr | Nowcasting Global Poverty Daniel Gerszon Mahler |
title_full_unstemmed | Nowcasting Global Poverty Daniel Gerszon Mahler |
title_short | Nowcasting Global Poverty |
title_sort | nowcasting global poverty |
topic | Inequality Machine Learning Nowcasting Poverty Poverty Lines Poverty Measurement Poverty Monitoring and Analysis Poverty Reduction |
topic_facet | Inequality Machine Learning Nowcasting Poverty Poverty Lines Poverty Measurement Poverty Monitoring and Analysis Poverty Reduction |
url | https://doi.org/10.1596/1813-9450-9860 |
work_keys_str_mv | AT mahlerdanielgerszon nowcastingglobalpoverty AT castanedaaguilarrandres nowcastingglobalpoverty AT newhousedavid nowcastingglobalpoverty |