Estimating the Impact of Weather on Agriculture:
This paper quantifies the significance and magnitude of the effect of measurement error in remote sensing weather data in the analysis of smallholder agricultural productivity. The analysis leverages 17 rounds of nationally-representative, panel household survey data from six countries in Sub-Sahara...
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Washington, D.C
The World Bank
2021
|
Subjects: | |
Online Access: | kostenfrei |
Summary: | This paper quantifies the significance and magnitude of the effect of measurement error in remote sensing weather data in the analysis of smallholder agricultural productivity. The analysis leverages 17 rounds of nationally-representative, panel household survey data from six countries in Sub-Saharan Africa. These data are spatially linked with a range of geospatial weather data sources and related metrics. The paper provides systematic evidence on measurement error introduced by (1) different methods used to obfuscate the exact GPS coordinates of households, (2) different metrics used to quantify precipitation and temperature, and (3) different remote sensing measurement technologies. First, the analysis finds no discernible effect of measurement error introduced by different obfuscation methods. Second, it finds that simple weather metrics, such as total seasonal rainfall and mean daily temperature, outperform more complex metrics, such as deviations in rainfall from the long-run average or growing degree days, in a broad range of settings. Finally, the analysis finds substantial amounts of measurement error based on remote sensing products. In extreme cases, the data drawn from different remote sensing products result in opposite signs for coefficients on weather metrics, meaning that precipitation or temperature drawn from one product purportedly increases crop output while the same metrics drawn from a different product purportedly reduces crop output. The paper concludes with a set of six best practices for researchers looking to combine remote sensing weather data with socioeconomic survey data |
Physical Description: | 1 Online-Ressource (151 Seiten) |
DOI: | 10.1596/1813-9450-9867 |
Staff View
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049080767 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230731s2021 xxu|||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-9867 |2 doi | |
035 | |a (ZDB-1-WBA)07655340X | ||
035 | |a (OCoLC)1392154280 | ||
035 | |a (DE-599)KEP07655340X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Michler, Jeffrey D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Estimating the Impact of Weather on Agriculture |c Jeffrey D. Michler |
264 | 1 | |a Washington, D.C |b The World Bank |c 2021 | |
300 | |a 1 Online-Ressource (151 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a This paper quantifies the significance and magnitude of the effect of measurement error in remote sensing weather data in the analysis of smallholder agricultural productivity. The analysis leverages 17 rounds of nationally-representative, panel household survey data from six countries in Sub-Saharan Africa. These data are spatially linked with a range of geospatial weather data sources and related metrics. The paper provides systematic evidence on measurement error introduced by (1) different methods used to obfuscate the exact GPS coordinates of households, (2) different metrics used to quantify precipitation and temperature, and (3) different remote sensing measurement technologies. First, the analysis finds no discernible effect of measurement error introduced by different obfuscation methods. Second, it finds that simple weather metrics, such as total seasonal rainfall and mean daily temperature, outperform more complex metrics, such as deviations in rainfall from the long-run average or growing degree days, in a broad range of settings. Finally, the analysis finds substantial amounts of measurement error based on remote sensing products. In extreme cases, the data drawn from different remote sensing products result in opposite signs for coefficients on weather metrics, meaning that precipitation or temperature drawn from one product purportedly increases crop output while the same metrics drawn from a different product purportedly reduces crop output. The paper concludes with a set of six best practices for researchers looking to combine remote sensing weather data with socioeconomic survey data | |
650 | 4 | |a Agricultural Productivity | |
650 | 4 | |a Agricultural Sector Economics | |
650 | 4 | |a Agriculture | |
650 | 4 | |a Climate and Meteorology | |
650 | 4 | |a Climate Change and Agriculture | |
650 | 4 | |a Climate Change Impacts | |
650 | 4 | |a Crop Yield | |
650 | 4 | |a Crops and Crop Management Systems | |
650 | 4 | |a Environment | |
650 | 4 | |a Precipitation | |
650 | 4 | |a Remote Sensing | |
650 | 4 | |a Science and Technology Development | |
650 | 4 | |a Temperature | |
650 | 4 | |a Weather Impacts | |
700 | 1 | |a Josephson, Anna |e Sonstige |4 oth | |
700 | 1 | |a Kilic, Talip |e Sonstige |4 oth | |
700 | 1 | |a Murray, Siobhan |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-9867 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034342657 |
Record in the Search Index
_version_ | 1824556238126448641 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Michler, Jeffrey D. |
author_facet | Michler, Jeffrey D. |
author_role | aut |
author_sort | Michler, Jeffrey D. |
author_variant | j d m jd jdm |
building | Verbundindex |
bvnumber | BV049080767 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)07655340X (OCoLC)1392154280 (DE-599)KEP07655340X |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-9867 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV049080767</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2021 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-9867</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)07655340X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392154280</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP07655340X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Michler, Jeffrey D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating the Impact of Weather on Agriculture</subfield><subfield code="c">Jeffrey D. Michler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (151 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This paper quantifies the significance and magnitude of the effect of measurement error in remote sensing weather data in the analysis of smallholder agricultural productivity. The analysis leverages 17 rounds of nationally-representative, panel household survey data from six countries in Sub-Saharan Africa. These data are spatially linked with a range of geospatial weather data sources and related metrics. The paper provides systematic evidence on measurement error introduced by (1) different methods used to obfuscate the exact GPS coordinates of households, (2) different metrics used to quantify precipitation and temperature, and (3) different remote sensing measurement technologies. First, the analysis finds no discernible effect of measurement error introduced by different obfuscation methods. Second, it finds that simple weather metrics, such as total seasonal rainfall and mean daily temperature, outperform more complex metrics, such as deviations in rainfall from the long-run average or growing degree days, in a broad range of settings. Finally, the analysis finds substantial amounts of measurement error based on remote sensing products. In extreme cases, the data drawn from different remote sensing products result in opposite signs for coefficients on weather metrics, meaning that precipitation or temperature drawn from one product purportedly increases crop output while the same metrics drawn from a different product purportedly reduces crop output. The paper concludes with a set of six best practices for researchers looking to combine remote sensing weather data with socioeconomic survey data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agricultural Productivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agricultural Sector Economics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate and Meteorology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate Change and Agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate Change Impacts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crop Yield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crops and Crop Management Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote Sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science and Technology Development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weather Impacts</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Josephson, Anna</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kilic, Talip</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murray, Siobhan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-9867</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034342657</subfield></datafield></record></collection> |
id | DE-604.BV049080767 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:27:58Z |
indexdate | 2025-02-20T07:20:23Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034342657 |
oclc_num | 1392154280 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (151 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | The World Bank |
record_format | marc |
spellingShingle | Michler, Jeffrey D. Estimating the Impact of Weather on Agriculture Agricultural Productivity Agricultural Sector Economics Agriculture Climate and Meteorology Climate Change and Agriculture Climate Change Impacts Crop Yield Crops and Crop Management Systems Environment Precipitation Remote Sensing Science and Technology Development Temperature Weather Impacts |
title | Estimating the Impact of Weather on Agriculture |
title_auth | Estimating the Impact of Weather on Agriculture |
title_exact_search | Estimating the Impact of Weather on Agriculture |
title_exact_search_txtP | Estimating the Impact of Weather on Agriculture |
title_full | Estimating the Impact of Weather on Agriculture Jeffrey D. Michler |
title_fullStr | Estimating the Impact of Weather on Agriculture Jeffrey D. Michler |
title_full_unstemmed | Estimating the Impact of Weather on Agriculture Jeffrey D. Michler |
title_short | Estimating the Impact of Weather on Agriculture |
title_sort | estimating the impact of weather on agriculture |
topic | Agricultural Productivity Agricultural Sector Economics Agriculture Climate and Meteorology Climate Change and Agriculture Climate Change Impacts Crop Yield Crops and Crop Management Systems Environment Precipitation Remote Sensing Science and Technology Development Temperature Weather Impacts |
topic_facet | Agricultural Productivity Agricultural Sector Economics Agriculture Climate and Meteorology Climate Change and Agriculture Climate Change Impacts Crop Yield Crops and Crop Management Systems Environment Precipitation Remote Sensing Science and Technology Development Temperature Weather Impacts |
url | https://doi.org/10.1596/1813-9450-9867 |
work_keys_str_mv | AT michlerjeffreyd estimatingtheimpactofweatheronagriculture AT josephsonanna estimatingtheimpactofweatheronagriculture AT kilictalip estimatingtheimpactofweatheronagriculture AT murraysiobhan estimatingtheimpactofweatheronagriculture |