Estimating Food Price Inflation from Partial Surveys:
The traditional consumer price index is often produced at an aggregate level, using data from few, highly urbanized, areas. As such, it poorly describes price trends in rural or poverty-stricken areas, where large populations may reside in fragile situations. Traditional price data collection also f...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2021
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The traditional consumer price index is often produced at an aggregate level, using data from few, highly urbanized, areas. As such, it poorly describes price trends in rural or poverty-stricken areas, where large populations may reside in fragile situations. Traditional price data collection also follows a deliberate sampling and measurement process that is not well suited for monitoring during crisis situations, when price stability may deteriorate rapidly. To gain real-time insights beyond what can be formally measured by traditional methods, this paper develops a machine-learning approach for imputation of ongoing subnational price surveys. The aim is to monitor inflation at the market level, relying only on incomplete and intermittent survey data. The capabilities are highlighted using World Food Programme surveys in 25 fragile and conflict-affected countries where real-time monthly food price data are not publicly available from official sources. The results are made available as a data set that covers more than 1200 markets and 43 food types. The local statistics provide a new granular view on important inflation events, including the World Food Price Crisis of 2007-08 and the surge in global inflation following the 2020 pandemic. The paper finds that imputations often achieve accuracy similar to direct measurement of prices. The estimates may provide new opportunities to investigate local price dynamics in markets where prices are sensitive to localized shocks and traditional data are not available |
Beschreibung: | 1 Online-Ressource (42 Seiten) |
DOI: | 10.1596/1813-9450-9886 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049080675 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230731s2021 xxu|||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-9886 |2 doi | |
035 | |a (ZDB-1-WBA)07696261X | ||
035 | |a (OCoLC)1392150287 | ||
035 | |a (DE-599)KEP07696261X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Andree, Bo Pieter Johannes |e Verfasser |4 aut | |
245 | 1 | 0 | |a Estimating Food Price Inflation from Partial Surveys |c Bo Pieter Johannes Andree |
264 | 1 | |a Washington, D.C |b The World Bank |c 2021 | |
300 | |a 1 Online-Ressource (42 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a The traditional consumer price index is often produced at an aggregate level, using data from few, highly urbanized, areas. As such, it poorly describes price trends in rural or poverty-stricken areas, where large populations may reside in fragile situations. Traditional price data collection also follows a deliberate sampling and measurement process that is not well suited for monitoring during crisis situations, when price stability may deteriorate rapidly. To gain real-time insights beyond what can be formally measured by traditional methods, this paper develops a machine-learning approach for imputation of ongoing subnational price surveys. The aim is to monitor inflation at the market level, relying only on incomplete and intermittent survey data. The capabilities are highlighted using World Food Programme surveys in 25 fragile and conflict-affected countries where real-time monthly food price data are not publicly available from official sources. The results are made available as a data set that covers more than 1200 markets and 43 food types. The local statistics provide a new granular view on important inflation events, including the World Food Price Crisis of 2007-08 and the surge in global inflation following the 2020 pandemic. The paper finds that imputations often achieve accuracy similar to direct measurement of prices. The estimates may provide new opportunities to investigate local price dynamics in markets where prices are sensitive to localized shocks and traditional data are not available | |
650 | 4 | |a Agriculture | |
650 | 4 | |a Financial Stability | |
650 | 4 | |a Food Prices | |
650 | 4 | |a Food Security | |
650 | 4 | |a Inflation | |
650 | 4 | |a Machine Learning | |
650 | 4 | |a Macroeconomics and Economic Growth | |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-9886 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034342566 |
Datensatz im Suchindex
_version_ | 1812671843127001088 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Andree, Bo Pieter Johannes |
author_facet | Andree, Bo Pieter Johannes |
author_role | aut |
author_sort | Andree, Bo Pieter Johannes |
author_variant | b p j a bpj bpja |
building | Verbundindex |
bvnumber | BV049080675 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)07696261X (OCoLC)1392150287 (DE-599)KEP07696261X |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-9886 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV049080675</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2021 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-9886</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)07696261X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392150287</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP07696261X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andree, Bo Pieter Johannes</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating Food Price Inflation from Partial Surveys</subfield><subfield code="c">Bo Pieter Johannes Andree</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (42 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The traditional consumer price index is often produced at an aggregate level, using data from few, highly urbanized, areas. As such, it poorly describes price trends in rural or poverty-stricken areas, where large populations may reside in fragile situations. Traditional price data collection also follows a deliberate sampling and measurement process that is not well suited for monitoring during crisis situations, when price stability may deteriorate rapidly. To gain real-time insights beyond what can be formally measured by traditional methods, this paper develops a machine-learning approach for imputation of ongoing subnational price surveys. The aim is to monitor inflation at the market level, relying only on incomplete and intermittent survey data. The capabilities are highlighted using World Food Programme surveys in 25 fragile and conflict-affected countries where real-time monthly food price data are not publicly available from official sources. The results are made available as a data set that covers more than 1200 markets and 43 food types. The local statistics provide a new granular view on important inflation events, including the World Food Price Crisis of 2007-08 and the surge in global inflation following the 2020 pandemic. The paper finds that imputations often achieve accuracy similar to direct measurement of prices. The estimates may provide new opportunities to investigate local price dynamics in markets where prices are sensitive to localized shocks and traditional data are not available</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Financial Stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Food Prices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Food Security</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inflation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macroeconomics and Economic Growth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-9886</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034342566</subfield></datafield></record></collection> |
id | DE-604.BV049080675 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:27:58Z |
indexdate | 2024-10-12T04:03:00Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034342566 |
oclc_num | 1392150287 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (42 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | The World Bank |
record_format | marc |
spellingShingle | Andree, Bo Pieter Johannes Estimating Food Price Inflation from Partial Surveys Agriculture Financial Stability Food Prices Food Security Inflation Machine Learning Macroeconomics and Economic Growth |
title | Estimating Food Price Inflation from Partial Surveys |
title_auth | Estimating Food Price Inflation from Partial Surveys |
title_exact_search | Estimating Food Price Inflation from Partial Surveys |
title_exact_search_txtP | Estimating Food Price Inflation from Partial Surveys |
title_full | Estimating Food Price Inflation from Partial Surveys Bo Pieter Johannes Andree |
title_fullStr | Estimating Food Price Inflation from Partial Surveys Bo Pieter Johannes Andree |
title_full_unstemmed | Estimating Food Price Inflation from Partial Surveys Bo Pieter Johannes Andree |
title_short | Estimating Food Price Inflation from Partial Surveys |
title_sort | estimating food price inflation from partial surveys |
topic | Agriculture Financial Stability Food Prices Food Security Inflation Machine Learning Macroeconomics and Economic Growth |
topic_facet | Agriculture Financial Stability Food Prices Food Security Inflation Machine Learning Macroeconomics and Economic Growth |
url | https://doi.org/10.1596/1813-9450-9886 |
work_keys_str_mv | AT andreebopieterjohannes estimatingfoodpriceinflationfrompartialsurveys |