New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation: An Attempt to Correct the Underestimation of Extreme Values
This paper contributes to the debate on ways to improve the calculation of inequality measures in developing countries experiencing severe budget constraints. Linear regression-based survey-to-survey imputation techniques are most frequently discussed in the literature. These are effective at estima...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2022
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This paper contributes to the debate on ways to improve the calculation of inequality measures in developing countries experiencing severe budget constraints. Linear regression-based survey-to-survey imputation techniques are most frequently discussed in the literature. These are effective at estimating predictions of poverty indicators but are much less accurate with inequality indicators. To demonstrate this limited accuracy, the first part of the paper discusses several simulations using Moroccan Household Budget Surveys and Labor Force Surveys. The paper proposes a method for overcoming these limitations based on an algorithm that minimizes the sum of the squared difference between a certain number of direct estimates of an index and its empirical version obtained from the predicted values. Indeed, when comparing the estimated results with those directly estimated from the original sample, the bias is negligible. Furthermore, the inequality indices for the years for which there are only model estimates, rather than direct information on expenditures, seem to be consistent with Moroccan economic trends |
Beschreibung: | 1 Online-Ressource (24 Seiten) |
DOI: | 10.1596/1813-9450-10013 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049080387 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230731s2022 xxu|||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-10013 |2 doi | |
035 | |a (ZDB-1-WBA)077918118 | ||
035 | |a (OCoLC)1392154083 | ||
035 | |a (DE-599)KEP077918118 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Betti, Gianni |e Verfasser |4 aut | |
245 | 1 | 0 | |a New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation |b An Attempt to Correct the Underestimation of Extreme Values |c Gianni Betti |
264 | 1 | |a Washington, D.C |b The World Bank |c 2022 | |
300 | |a 1 Online-Ressource (24 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a This paper contributes to the debate on ways to improve the calculation of inequality measures in developing countries experiencing severe budget constraints. Linear regression-based survey-to-survey imputation techniques are most frequently discussed in the literature. These are effective at estimating predictions of poverty indicators but are much less accurate with inequality indicators. To demonstrate this limited accuracy, the first part of the paper discusses several simulations using Moroccan Household Budget Surveys and Labor Force Surveys. The paper proposes a method for overcoming these limitations based on an algorithm that minimizes the sum of the squared difference between a certain number of direct estimates of an index and its empirical version obtained from the predicted values. Indeed, when comparing the estimated results with those directly estimated from the original sample, the bias is negligible. Furthermore, the inequality indices for the years for which there are only model estimates, rather than direct information on expenditures, seem to be consistent with Moroccan economic trends | |
650 | 4 | |a Bias Reduction | |
650 | 4 | |a Household Survey | |
650 | 4 | |a Inequality | |
650 | 4 | |a Inequality Indicators | |
650 | 4 | |a Moroccan HBS | |
650 | 4 | |a Moroccan LFS | |
650 | 4 | |a Poverty and Inequality | |
650 | 4 | |a Poverty Assessment | |
650 | 4 | |a Poverty Estimation | |
650 | 4 | |a Poverty Indicators | |
650 | 4 | |a Poverty Map | |
650 | 4 | |a Poverty Monitoring and Analysis | |
650 | 4 | |a Poverty Reduction | |
650 | 4 | |a Poverty Statistics | |
650 | 4 | |a Poverty Trends | |
650 | 4 | |a Survey-To-Survey Imputation | |
700 | 1 | |a Molini, Vasco |e Sonstige |4 oth | |
700 | 1 | |a Mori, Lorenzo |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-10013 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034342278 |
Datensatz im Suchindex
_version_ | 1812671838956814336 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Betti, Gianni |
author_facet | Betti, Gianni |
author_role | aut |
author_sort | Betti, Gianni |
author_variant | g b gb |
building | Verbundindex |
bvnumber | BV049080387 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)077918118 (OCoLC)1392154083 (DE-599)KEP077918118 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-10013 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV049080387</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2022 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-10013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)077918118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392154083</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP077918118</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Betti, Gianni</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation</subfield><subfield code="b">An Attempt to Correct the Underestimation of Extreme Values</subfield><subfield code="c">Gianni Betti</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (24 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This paper contributes to the debate on ways to improve the calculation of inequality measures in developing countries experiencing severe budget constraints. Linear regression-based survey-to-survey imputation techniques are most frequently discussed in the literature. These are effective at estimating predictions of poverty indicators but are much less accurate with inequality indicators. To demonstrate this limited accuracy, the first part of the paper discusses several simulations using Moroccan Household Budget Surveys and Labor Force Surveys. The paper proposes a method for overcoming these limitations based on an algorithm that minimizes the sum of the squared difference between a certain number of direct estimates of an index and its empirical version obtained from the predicted values. Indeed, when comparing the estimated results with those directly estimated from the original sample, the bias is negligible. Furthermore, the inequality indices for the years for which there are only model estimates, rather than direct information on expenditures, seem to be consistent with Moroccan economic trends</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bias Reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Household Survey</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequality Indicators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moroccan HBS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moroccan LFS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty and Inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Indicators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Monitoring and Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Trends</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Survey-To-Survey Imputation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Molini, Vasco</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mori, Lorenzo</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-10013</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034342278</subfield></datafield></record></collection> |
id | DE-604.BV049080387 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:27:57Z |
indexdate | 2024-10-12T04:02:56Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034342278 |
oclc_num | 1392154083 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (24 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | The World Bank |
record_format | marc |
spellingShingle | Betti, Gianni New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation An Attempt to Correct the Underestimation of Extreme Values Bias Reduction Household Survey Inequality Inequality Indicators Moroccan HBS Moroccan LFS Poverty and Inequality Poverty Assessment Poverty Estimation Poverty Indicators Poverty Map Poverty Monitoring and Analysis Poverty Reduction Poverty Statistics Poverty Trends Survey-To-Survey Imputation |
title | New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation An Attempt to Correct the Underestimation of Extreme Values |
title_auth | New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation An Attempt to Correct the Underestimation of Extreme Values |
title_exact_search | New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation An Attempt to Correct the Underestimation of Extreme Values |
title_exact_search_txtP | New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation An Attempt to Correct the Underestimation of Extreme Values |
title_full | New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation An Attempt to Correct the Underestimation of Extreme Values Gianni Betti |
title_fullStr | New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation An Attempt to Correct the Underestimation of Extreme Values Gianni Betti |
title_full_unstemmed | New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation An Attempt to Correct the Underestimation of Extreme Values Gianni Betti |
title_short | New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation |
title_sort | new algorithm to estimate inequality measures in cross survey imputation an attempt to correct the underestimation of extreme values |
title_sub | An Attempt to Correct the Underestimation of Extreme Values |
topic | Bias Reduction Household Survey Inequality Inequality Indicators Moroccan HBS Moroccan LFS Poverty and Inequality Poverty Assessment Poverty Estimation Poverty Indicators Poverty Map Poverty Monitoring and Analysis Poverty Reduction Poverty Statistics Poverty Trends Survey-To-Survey Imputation |
topic_facet | Bias Reduction Household Survey Inequality Inequality Indicators Moroccan HBS Moroccan LFS Poverty and Inequality Poverty Assessment Poverty Estimation Poverty Indicators Poverty Map Poverty Monitoring and Analysis Poverty Reduction Poverty Statistics Poverty Trends Survey-To-Survey Imputation |
url | https://doi.org/10.1596/1813-9450-10013 |
work_keys_str_mv | AT bettigianni newalgorithmtoestimateinequalitymeasuresincrosssurveyimputationanattempttocorrecttheunderestimationofextremevalues AT molinivasco newalgorithmtoestimateinequalitymeasuresincrosssurveyimputationanattempttocorrecttheunderestimationofextremevalues AT morilorenzo newalgorithmtoestimateinequalitymeasuresincrosssurveyimputationanattempttocorrecttheunderestimationofextremevalues |