Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts:
Motivated by the deterioration in global food security conditions, this paper develops a parsimonious machine learning model to derive a multi-year outlook of global severe food insecurity from macro-economic projections. The objective is to provide forecasts that are internally consistent with wide...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2022
|
Schlagworte: | |
Online-Zugang: | kostenfrei |
Zusammenfassung: | Motivated by the deterioration in global food security conditions, this paper develops a parsimonious machine learning model to derive a multi-year outlook of global severe food insecurity from macro-economic projections. The objective is to provide forecasts that are internally consistent with wider economic assessments, allowing both food security policies and economic development policies to be informed by a cohesive set of expectations. The model is validated on holdout data that explicitly test the ability to forecast new data from history and extrapolate beyond observed intervals. It is then applied to the World Economic Outlook database of April 2022 to project the severely food insecure population across all 144 World Bank lending countries. The analysis estimates that the global severely food insecure population may remain above 1 billion through 2027 unless large-scale interventions are made. The paper also explores counterfactual scenarios, first to investigate additional risks in a downside economic scenario, and second, to investigate whether restoring macroeconomic targets is sufficient to revert food insecurity back to pre-pandemic levels. The paper concludes that the proposed model provides a robust and low-cost approach to maintain reliable long-term projections and produce scenario analyses that can be revised systematically and interpreted within the context of available economic outlooks |
Beschreibung: | 1 Online-Ressource (44 Seiten) |
DOI: | 10.1596/1813-9450-10202 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049079651 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230731s2022 xxu|||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-10202 |2 doi | |
035 | |a (ZDB-1-WBA)083544216 | ||
035 | |a (OCoLC)1392138933 | ||
035 | |a (DE-599)KEP083544216 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Andree, Bo Pieter Johannes |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts |c Bo Pieter Johannes Andree |
264 | 1 | |a Washington, D.C |b The World Bank |c 2022 | |
300 | |a 1 Online-Ressource (44 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a Motivated by the deterioration in global food security conditions, this paper develops a parsimonious machine learning model to derive a multi-year outlook of global severe food insecurity from macro-economic projections. The objective is to provide forecasts that are internally consistent with wider economic assessments, allowing both food security policies and economic development policies to be informed by a cohesive set of expectations. The model is validated on holdout data that explicitly test the ability to forecast new data from history and extrapolate beyond observed intervals. It is then applied to the World Economic Outlook database of April 2022 to project the severely food insecure population across all 144 World Bank lending countries. The analysis estimates that the global severely food insecure population may remain above 1 billion through 2027 unless large-scale interventions are made. The paper also explores counterfactual scenarios, first to investigate additional risks in a downside economic scenario, and second, to investigate whether restoring macroeconomic targets is sufficient to revert food insecurity back to pre-pandemic levels. The paper concludes that the proposed model provides a robust and low-cost approach to maintain reliable long-term projections and produce scenario analyses that can be revised systematically and interpreted within the context of available economic outlooks | |
650 | 4 | |a Agriculture | |
650 | 4 | |a Economic Shocks | |
650 | 4 | |a Food and Nutrition Policy | |
650 | 4 | |a Food Crises | |
650 | 4 | |a Food Insecurity | |
650 | 4 | |a Food Security | |
650 | 4 | |a Food Security Policy | |
650 | 4 | |a Health, Nutrition and Population | |
650 | 4 | |a Humanitarian Needs | |
650 | 4 | |a Machine Learning | |
650 | 4 | |a Macro-Economic Projection | |
650 | 4 | |a Pre-Pandemic Food Security | |
650 | 4 | |a Social Development | |
650 | 4 | |a Vulnerability | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Andree, Bo Pieter Johannes |t Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts |d Washington, D.C. : The World Bank, 2022 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-10202 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034341542 |
Datensatz im Suchindex
_version_ | 1812671834669187072 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Andree, Bo Pieter Johannes |
author_facet | Andree, Bo Pieter Johannes |
author_role | aut |
author_sort | Andree, Bo Pieter Johannes |
author_variant | b p j a bpj bpja |
building | Verbundindex |
bvnumber | BV049079651 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)083544216 (OCoLC)1392138933 (DE-599)KEP083544216 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-10202 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV049079651</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2022 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-10202</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)083544216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392138933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP083544216</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andree, Bo Pieter Johannes</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts</subfield><subfield code="c">Bo Pieter Johannes Andree</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (44 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Motivated by the deterioration in global food security conditions, this paper develops a parsimonious machine learning model to derive a multi-year outlook of global severe food insecurity from macro-economic projections. The objective is to provide forecasts that are internally consistent with wider economic assessments, allowing both food security policies and economic development policies to be informed by a cohesive set of expectations. The model is validated on holdout data that explicitly test the ability to forecast new data from history and extrapolate beyond observed intervals. It is then applied to the World Economic Outlook database of April 2022 to project the severely food insecure population across all 144 World Bank lending countries. The analysis estimates that the global severely food insecure population may remain above 1 billion through 2027 unless large-scale interventions are made. The paper also explores counterfactual scenarios, first to investigate additional risks in a downside economic scenario, and second, to investigate whether restoring macroeconomic targets is sufficient to revert food insecurity back to pre-pandemic levels. The paper concludes that the proposed model provides a robust and low-cost approach to maintain reliable long-term projections and produce scenario analyses that can be revised systematically and interpreted within the context of available economic outlooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Shocks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Food and Nutrition Policy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Food Crises</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Food Insecurity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Food Security</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Food Security Policy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health, Nutrition and Population</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Humanitarian Needs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macro-Economic Projection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pre-Pandemic Food Security</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social Development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vulnerability</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Andree, Bo Pieter Johannes</subfield><subfield code="t">Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts</subfield><subfield code="d">Washington, D.C. : The World Bank, 2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-10202</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034341542</subfield></datafield></record></collection> |
id | DE-604.BV049079651 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:27:56Z |
indexdate | 2024-10-12T04:02:52Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034341542 |
oclc_num | 1392138933 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (44 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | The World Bank |
record_format | marc |
spellingShingle | Andree, Bo Pieter Johannes Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts Agriculture Economic Shocks Food and Nutrition Policy Food Crises Food Insecurity Food Security Food Security Policy Health, Nutrition and Population Humanitarian Needs Machine Learning Macro-Economic Projection Pre-Pandemic Food Security Social Development Vulnerability |
title | Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts |
title_auth | Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts |
title_exact_search | Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts |
title_exact_search_txtP | Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts |
title_full | Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts Bo Pieter Johannes Andree |
title_fullStr | Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts Bo Pieter Johannes Andree |
title_full_unstemmed | Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts Bo Pieter Johannes Andree |
title_short | Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts |
title_sort | machine learning guided outlook of global food insecurity consistent with macroeconomic forecasts |
topic | Agriculture Economic Shocks Food and Nutrition Policy Food Crises Food Insecurity Food Security Food Security Policy Health, Nutrition and Population Humanitarian Needs Machine Learning Macro-Economic Projection Pre-Pandemic Food Security Social Development Vulnerability |
topic_facet | Agriculture Economic Shocks Food and Nutrition Policy Food Crises Food Insecurity Food Security Food Security Policy Health, Nutrition and Population Humanitarian Needs Machine Learning Macro-Economic Projection Pre-Pandemic Food Security Social Development Vulnerability |
url | https://doi.org/10.1596/1813-9450-10202 |
work_keys_str_mv | AT andreebopieterjohannes machinelearningguidedoutlookofglobalfoodinsecurityconsistentwithmacroeconomicforecasts |