Machine Learning and Sensitivity Analysis Approach to Quantify Uncertainty in Landslide Susceptibility Mapping:
Mitigating the impacts of landslides requires quantifying the susceptibility of different infrastructures to this hazard through landslide susceptibility mapping. The mapping requires overlaying the spatial effects of multiple factors that contribute to the occurrence of landslide events (rainfall,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2022
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Mitigating the impacts of landslides requires quantifying the susceptibility of different infrastructures to this hazard through landslide susceptibility mapping. The mapping requires overlaying the spatial effects of multiple factors that contribute to the occurrence of landslide events (rainfall, land cover, distance to roads, lithology, and slope) and this process requires assigning weights to the different factors contributing to landslides. This study introduces a new statistical approach for quantifying the weights used in landslide susceptibility mapping and their associated uncertainty. The proposed approach combines machine learning (random forest classification) with large-scale sensitivity analysis to derive the uncertainty ranges of weights used in landslide susceptibility mapping. The study demonstrates the approach for a case study of the Chittagong Hill Tracts and Sylhet divisions of Bangladesh to understand the implications of weight uncertainty for road susceptibility to landslides. The case study results show that distance to roads is the most influential factor to determine the likelihood of the occurrence of landslide events, followed by the land cover type. Given weight uncertainty, the percentage of road lengths in the study area under extremely high susceptibility to landslides ranges from around 20 to 38 percent. The tolerance level to weight uncertainty is a crucial determinant of investment costs and is ultimately a critical element for decision making to relevant institutions and affected stakeholders. A conservative selection of weights from within the uncertainty range (a weight combination that results in the highest susceptibility) means that the risk is minimized but with a high investment cost |
Beschreibung: | 1 Online-Ressource (33 Seiten) |
DOI: | 10.1596/1813-9450-10264 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049079437 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230731s2022 xxu|||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-10264 |2 doi | |
035 | |a (ZDB-1-WBA)089161580 | ||
035 | |a (OCoLC)1392146043 | ||
035 | |a (DE-599)KEP089161580 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Basheer, Mohammed |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine Learning and Sensitivity Analysis Approach to Quantify Uncertainty in Landslide Susceptibility Mapping |c Mohammed Basheer |
264 | 1 | |a Washington, D.C |b The World Bank |c 2022 | |
300 | |a 1 Online-Ressource (33 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a Mitigating the impacts of landslides requires quantifying the susceptibility of different infrastructures to this hazard through landslide susceptibility mapping. The mapping requires overlaying the spatial effects of multiple factors that contribute to the occurrence of landslide events (rainfall, land cover, distance to roads, lithology, and slope) and this process requires assigning weights to the different factors contributing to landslides. This study introduces a new statistical approach for quantifying the weights used in landslide susceptibility mapping and their associated uncertainty. The proposed approach combines machine learning (random forest classification) with large-scale sensitivity analysis to derive the uncertainty ranges of weights used in landslide susceptibility mapping. The study demonstrates the approach for a case study of the Chittagong Hill Tracts and Sylhet divisions of Bangladesh to understand the implications of weight uncertainty for road susceptibility to landslides. The case study results show that distance to roads is the most influential factor to determine the likelihood of the occurrence of landslide events, followed by the land cover type. Given weight uncertainty, the percentage of road lengths in the study area under extremely high susceptibility to landslides ranges from around 20 to 38 percent. The tolerance level to weight uncertainty is a crucial determinant of investment costs and is ultimately a critical element for decision making to relevant institutions and affected stakeholders. A conservative selection of weights from within the uncertainty range (a weight combination that results in the highest susceptibility) means that the risk is minimized but with a high investment cost | |
650 | 4 | |a Disaster Risk Assessment | |
650 | 4 | |a Disaster Risk Management | |
650 | 4 | |a Geographic Information Systems | |
650 | 4 | |a Hazard Risk Management | |
650 | 4 | |a Infrastructure Hazard Susceptibility | |
650 | 4 | |a Innovation | |
650 | 4 | |a Landslide Risk Reduction | |
650 | 4 | |a Road Asset Management | |
650 | 4 | |a Science and Technology Development | |
650 | 4 | |a Technology Innovation | |
650 | 4 | |a Urban Development | |
700 | 1 | |a Oommen, Thomas |e Sonstige |4 oth | |
700 | 1 | |a Suzuki, Sachi |e Sonstige |4 oth | |
700 | 1 | |a Takamatsu, Masatsugu |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Basheer, Mohammed |t Machine Learning and Sensitivity Analysis Approach to Quantify Uncertainty in Landslide Susceptibility Mapping |d Washington, D.C. : The World Bank, 2023 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-10264 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034341328 |
Datensatz im Suchindex
_version_ | 1824556231837089792 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Basheer, Mohammed |
author_facet | Basheer, Mohammed |
author_role | aut |
author_sort | Basheer, Mohammed |
author_variant | m b mb |
building | Verbundindex |
bvnumber | BV049079437 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)089161580 (OCoLC)1392146043 (DE-599)KEP089161580 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-10264 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV049079437</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2022 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-10264</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)089161580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392146043</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP089161580</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Basheer, Mohammed</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning and Sensitivity Analysis Approach to Quantify Uncertainty in Landslide Susceptibility Mapping</subfield><subfield code="c">Mohammed Basheer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (33 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Mitigating the impacts of landslides requires quantifying the susceptibility of different infrastructures to this hazard through landslide susceptibility mapping. The mapping requires overlaying the spatial effects of multiple factors that contribute to the occurrence of landslide events (rainfall, land cover, distance to roads, lithology, and slope) and this process requires assigning weights to the different factors contributing to landslides. This study introduces a new statistical approach for quantifying the weights used in landslide susceptibility mapping and their associated uncertainty. The proposed approach combines machine learning (random forest classification) with large-scale sensitivity analysis to derive the uncertainty ranges of weights used in landslide susceptibility mapping. The study demonstrates the approach for a case study of the Chittagong Hill Tracts and Sylhet divisions of Bangladesh to understand the implications of weight uncertainty for road susceptibility to landslides. The case study results show that distance to roads is the most influential factor to determine the likelihood of the occurrence of landslide events, followed by the land cover type. Given weight uncertainty, the percentage of road lengths in the study area under extremely high susceptibility to landslides ranges from around 20 to 38 percent. The tolerance level to weight uncertainty is a crucial determinant of investment costs and is ultimately a critical element for decision making to relevant institutions and affected stakeholders. A conservative selection of weights from within the uncertainty range (a weight combination that results in the highest susceptibility) means that the risk is minimized but with a high investment cost</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disaster Risk Assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disaster Risk Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geographic Information Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hazard Risk Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infrastructure Hazard Susceptibility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Innovation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landslide Risk Reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Road Asset Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science and Technology Development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technology Innovation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban Development</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oommen, Thomas</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suzuki, Sachi</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Takamatsu, Masatsugu</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Basheer, Mohammed</subfield><subfield code="t">Machine Learning and Sensitivity Analysis Approach to Quantify Uncertainty in Landslide Susceptibility Mapping</subfield><subfield code="d">Washington, D.C. : The World Bank, 2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-10264</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034341328</subfield></datafield></record></collection> |
id | DE-604.BV049079437 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:27:55Z |
indexdate | 2025-02-20T07:20:17Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034341328 |
oclc_num | 1392146043 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (33 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | The World Bank |
record_format | marc |
spellingShingle | Basheer, Mohammed Machine Learning and Sensitivity Analysis Approach to Quantify Uncertainty in Landslide Susceptibility Mapping Disaster Risk Assessment Disaster Risk Management Geographic Information Systems Hazard Risk Management Infrastructure Hazard Susceptibility Innovation Landslide Risk Reduction Road Asset Management Science and Technology Development Technology Innovation Urban Development |
title | Machine Learning and Sensitivity Analysis Approach to Quantify Uncertainty in Landslide Susceptibility Mapping |
title_auth | Machine Learning and Sensitivity Analysis Approach to Quantify Uncertainty in Landslide Susceptibility Mapping |
title_exact_search | Machine Learning and Sensitivity Analysis Approach to Quantify Uncertainty in Landslide Susceptibility Mapping |
title_exact_search_txtP | Machine Learning and Sensitivity Analysis Approach to Quantify Uncertainty in Landslide Susceptibility Mapping |
title_full | Machine Learning and Sensitivity Analysis Approach to Quantify Uncertainty in Landslide Susceptibility Mapping Mohammed Basheer |
title_fullStr | Machine Learning and Sensitivity Analysis Approach to Quantify Uncertainty in Landslide Susceptibility Mapping Mohammed Basheer |
title_full_unstemmed | Machine Learning and Sensitivity Analysis Approach to Quantify Uncertainty in Landslide Susceptibility Mapping Mohammed Basheer |
title_short | Machine Learning and Sensitivity Analysis Approach to Quantify Uncertainty in Landslide Susceptibility Mapping |
title_sort | machine learning and sensitivity analysis approach to quantify uncertainty in landslide susceptibility mapping |
topic | Disaster Risk Assessment Disaster Risk Management Geographic Information Systems Hazard Risk Management Infrastructure Hazard Susceptibility Innovation Landslide Risk Reduction Road Asset Management Science and Technology Development Technology Innovation Urban Development |
topic_facet | Disaster Risk Assessment Disaster Risk Management Geographic Information Systems Hazard Risk Management Infrastructure Hazard Susceptibility Innovation Landslide Risk Reduction Road Asset Management Science and Technology Development Technology Innovation Urban Development |
url | https://doi.org/10.1596/1813-9450-10264 |
work_keys_str_mv | AT basheermohammed machinelearningandsensitivityanalysisapproachtoquantifyuncertaintyinlandslidesusceptibilitymapping AT oommenthomas machinelearningandsensitivityanalysisapproachtoquantifyuncertaintyinlandslidesusceptibilitymapping AT suzukisachi machinelearningandsensitivityanalysisapproachtoquantifyuncertaintyinlandslidesusceptibilitymapping AT takamatsumasatsugu machinelearningandsensitivityanalysisapproachtoquantifyuncertaintyinlandslidesusceptibilitymapping |