Improving Estimates of Mean Welfare and Uncertainty in Developing Countries:
Reliable estimates of economic welfare for small areas are valuable inputs into the design and evaluation of development policies. This paper compares the accuracy of point estimates and confidence intervals for small area estimates of wealth and poverty derived from four different prediction method...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2023
|
Schlagworte: | |
Online-Zugang: | kostenfrei |
Zusammenfassung: | Reliable estimates of economic welfare for small areas are valuable inputs into the design and evaluation of development policies. This paper compares the accuracy of point estimates and confidence intervals for small area estimates of wealth and poverty derived from four different prediction methods: linear mixed models, Cubist regression, extreme gradient boosting, and boosted regression forests. The evaluation draws samples from unit-level household census data from four developing countries, combines them with publicly and globally available geospatial indicators to generate small area estimates, and evaluates these estimates against aggregates calculated using the full census. Predictions of wealth are evaluated in four countries and poverty in one. All three machine learning methods outperform the traditional linear mixed model, with extreme gradient boosting and boosted regression forests generally outperforming the other alternatives. The proposed residual bootstrap procedure reliably estimates confidence intervals for the machine learning estimators, with estimated coverage rates across simulations falling between 94 and 97 percent. These results demonstrate that predictions obtained using tree-based gradient boosting with a random effect block bootstrap generate more accurate point and uncertainty estimates than prevailing methods for generating small area welfare estimates |
Beschreibung: | 1 Online-Ressource (57 Seiten) |
DOI: | 10.1596/1813-9450-10348 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049079238 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230731s2023 xxu|||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-10348 |2 doi | |
035 | |a (ZDB-1-WBA)091407117 | ||
035 | |a (OCoLC)1392146225 | ||
035 | |a (DE-599)KEP091407117 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Merfeld, Joshua D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Improving Estimates of Mean Welfare and Uncertainty in Developing Countries |c Joshua D. Merfeld |
264 | 1 | |a Washington, D.C |b The World Bank |c 2023 | |
300 | |a 1 Online-Ressource (57 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a Reliable estimates of economic welfare for small areas are valuable inputs into the design and evaluation of development policies. This paper compares the accuracy of point estimates and confidence intervals for small area estimates of wealth and poverty derived from four different prediction methods: linear mixed models, Cubist regression, extreme gradient boosting, and boosted regression forests. The evaluation draws samples from unit-level household census data from four developing countries, combines them with publicly and globally available geospatial indicators to generate small area estimates, and evaluates these estimates against aggregates calculated using the full census. Predictions of wealth are evaluated in four countries and poverty in one. All three machine learning methods outperform the traditional linear mixed model, with extreme gradient boosting and boosted regression forests generally outperforming the other alternatives. The proposed residual bootstrap procedure reliably estimates confidence intervals for the machine learning estimators, with estimated coverage rates across simulations falling between 94 and 97 percent. These results demonstrate that predictions obtained using tree-based gradient boosting with a random effect block bootstrap generate more accurate point and uncertainty estimates than prevailing methods for generating small area welfare estimates | |
650 | 4 | |a Development Policy | |
650 | 4 | |a Geospacial Data | |
650 | 4 | |a Household Census Data | |
650 | 4 | |a Machine Learning | |
650 | 4 | |a Macroeconomics and Economic Growth | |
650 | 4 | |a Poverty Reduction | |
650 | 4 | |a Prediction of Poverty | |
650 | 4 | |a Prediction of Wealth | |
650 | 4 | |a Welfare | |
700 | 1 | |a Newhouse, David |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Merfeld, Joshua D |t Improving Estimates of Mean Welfare and Uncertainty in Developing Countries |d Washington, D.C. : The World Bank, 2023 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-10348 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034341129 |
Datensatz im Suchindex
_version_ | 1824556227101720577 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Merfeld, Joshua D. |
author_facet | Merfeld, Joshua D. |
author_role | aut |
author_sort | Merfeld, Joshua D. |
author_variant | j d m jd jdm |
building | Verbundindex |
bvnumber | BV049079238 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)091407117 (OCoLC)1392146225 (DE-599)KEP091407117 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-10348 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV049079238</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2023 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-10348</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)091407117</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392146225</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP091407117</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Merfeld, Joshua D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving Estimates of Mean Welfare and Uncertainty in Developing Countries</subfield><subfield code="c">Joshua D. Merfeld</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (57 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Reliable estimates of economic welfare for small areas are valuable inputs into the design and evaluation of development policies. This paper compares the accuracy of point estimates and confidence intervals for small area estimates of wealth and poverty derived from four different prediction methods: linear mixed models, Cubist regression, extreme gradient boosting, and boosted regression forests. The evaluation draws samples from unit-level household census data from four developing countries, combines them with publicly and globally available geospatial indicators to generate small area estimates, and evaluates these estimates against aggregates calculated using the full census. Predictions of wealth are evaluated in four countries and poverty in one. All three machine learning methods outperform the traditional linear mixed model, with extreme gradient boosting and boosted regression forests generally outperforming the other alternatives. The proposed residual bootstrap procedure reliably estimates confidence intervals for the machine learning estimators, with estimated coverage rates across simulations falling between 94 and 97 percent. These results demonstrate that predictions obtained using tree-based gradient boosting with a random effect block bootstrap generate more accurate point and uncertainty estimates than prevailing methods for generating small area welfare estimates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Development Policy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geospacial Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Household Census Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macroeconomics and Economic Growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction of Poverty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction of Wealth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Welfare</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Newhouse, David</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Merfeld, Joshua D</subfield><subfield code="t">Improving Estimates of Mean Welfare and Uncertainty in Developing Countries</subfield><subfield code="d">Washington, D.C. : The World Bank, 2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-10348</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034341129</subfield></datafield></record></collection> |
id | DE-604.BV049079238 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:27:55Z |
indexdate | 2025-02-20T07:20:12Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034341129 |
oclc_num | 1392146225 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (57 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | The World Bank |
record_format | marc |
spellingShingle | Merfeld, Joshua D. Improving Estimates of Mean Welfare and Uncertainty in Developing Countries Development Policy Geospacial Data Household Census Data Machine Learning Macroeconomics and Economic Growth Poverty Reduction Prediction of Poverty Prediction of Wealth Welfare |
title | Improving Estimates of Mean Welfare and Uncertainty in Developing Countries |
title_auth | Improving Estimates of Mean Welfare and Uncertainty in Developing Countries |
title_exact_search | Improving Estimates of Mean Welfare and Uncertainty in Developing Countries |
title_exact_search_txtP | Improving Estimates of Mean Welfare and Uncertainty in Developing Countries |
title_full | Improving Estimates of Mean Welfare and Uncertainty in Developing Countries Joshua D. Merfeld |
title_fullStr | Improving Estimates of Mean Welfare and Uncertainty in Developing Countries Joshua D. Merfeld |
title_full_unstemmed | Improving Estimates of Mean Welfare and Uncertainty in Developing Countries Joshua D. Merfeld |
title_short | Improving Estimates of Mean Welfare and Uncertainty in Developing Countries |
title_sort | improving estimates of mean welfare and uncertainty in developing countries |
topic | Development Policy Geospacial Data Household Census Data Machine Learning Macroeconomics and Economic Growth Poverty Reduction Prediction of Poverty Prediction of Wealth Welfare |
topic_facet | Development Policy Geospacial Data Household Census Data Machine Learning Macroeconomics and Economic Growth Poverty Reduction Prediction of Poverty Prediction of Wealth Welfare |
url | https://doi.org/10.1596/1813-9450-10348 |
work_keys_str_mv | AT merfeldjoshuad improvingestimatesofmeanwelfareanduncertaintyindevelopingcountries AT newhousedavid improvingestimatesofmeanwelfareanduncertaintyindevelopingcountries |