Machine learning for experiments in the social sciences:
Causal inference and machine learning are typically introduced in the social sciences separately as theoretically distinct methodological traditions. This volume provides theoretical and practical introductions to machine learning for social scientists interested in applying such methods to experime...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore
Cambridge University Press
2023
|
Schriftenreihe: | Cambridge elements Elements in experimental political science
|
Schlagworte: | |
Online-Zugang: | DE-12 DE-473 DE-706 Volltext |
Zusammenfassung: | Causal inference and machine learning are typically introduced in the social sciences separately as theoretically distinct methodological traditions. This volume provides theoretical and practical introductions to machine learning for social scientists interested in applying such methods to experimental data |
Beschreibung: | Literaturverzeichnis: Seite 65-72 Zusatzmaterial verfügbar unter: https://osf.io/paxhs/ |
Beschreibung: | 1 Online-Ressource (72 Seiten) Illustrationen, Diagramme |
ISBN: | 9781009168236 |
DOI: | 10.1017/9781009168236 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049052465 | ||
003 | DE-604 | ||
005 | 20240403 | ||
007 | cr|uuu---uuuuu | ||
008 | 230717s2023 xx a||| o|||| 00||| eng d | ||
020 | |a 9781009168236 |c Online |9 978-1-00-916823-6 | ||
024 | 7 | |a 10.1017/9781009168236 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009168236 | ||
035 | |a (OCoLC)1390810626 | ||
035 | |a (DE-599)BVBBV049052465 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 |a DE-706 | ||
082 | 0 | |a 300.2855631 | |
084 | |a MR 2200 |0 (DE-625)123489: |2 rvk | ||
100 | 1 | |a Green, Jon |d 1991- |e Verfasser |0 (DE-588)1298302021 |4 aut | |
245 | 1 | 0 | |a Machine learning for experiments in the social sciences |c Jon Green, Mark H. White |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (72 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge elements |a Elements in experimental political science | |
500 | |a Literaturverzeichnis: Seite 65-72 | ||
500 | |a Zusatzmaterial verfügbar unter: https://osf.io/paxhs/ | ||
520 | |a Causal inference and machine learning are typically introduced in the social sciences separately as theoretically distinct methodological traditions. This volume provides theoretical and practical introductions to machine learning for social scientists interested in applying such methods to experimental data | ||
650 | 4 | |a Social sciences / Statistical methods / Data processing | |
650 | 4 | |a Machine learning | |
650 | 0 | 7 | |a Experiment |0 (DE-588)4015999-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sozialwissenschaften |0 (DE-588)4055916-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sozialwissenschaften |0 (DE-588)4055916-6 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Experiment |0 (DE-588)4015999-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a White, Mark H. |c II |0 (DE-588)1321866550 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-009-16822-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009168236 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034314784 | |
966 | e | |u https://doi.org/10.1017/9781009168236 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009168236 |l DE-473 |p ZDB-20-CBO |q UBG_PDA_CBO_Kauf23 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009168236 |l DE-706 |p ZDB-20-CBO |q UBY_PDA_CBO_Kauf_24 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818352857686999040 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Green, Jon 1991- White, Mark H. II |
author_GND | (DE-588)1298302021 (DE-588)1321866550 |
author_facet | Green, Jon 1991- White, Mark H. II |
author_role | aut aut |
author_sort | Green, Jon 1991- |
author_variant | j g jg m h w mh mhw |
building | Verbundindex |
bvnumber | BV049052465 |
classification_rvk | MR 2200 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009168236 (OCoLC)1390810626 (DE-599)BVBBV049052465 |
dewey-full | 300.2855631 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 300 - Social sciences |
dewey-raw | 300.2855631 |
dewey-search | 300.2855631 |
dewey-sort | 3300.2855631 |
dewey-tens | 300 - Social sciences |
discipline | Soziologie |
discipline_str_mv | Soziologie |
doi_str_mv | 10.1017/9781009168236 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049052465</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240403</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230717s2023 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009168236</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-916823-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009168236</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009168236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1390810626</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049052465</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">300.2855631</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MR 2200</subfield><subfield code="0">(DE-625)123489:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Green, Jon</subfield><subfield code="d">1991-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1298302021</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for experiments in the social sciences</subfield><subfield code="c">Jon Green, Mark H. White</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (72 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge elements</subfield><subfield code="a">Elements in experimental political science</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis: Seite 65-72</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Zusatzmaterial verfügbar unter: https://osf.io/paxhs/</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Causal inference and machine learning are typically introduced in the social sciences separately as theoretically distinct methodological traditions. This volume provides theoretical and practical introductions to machine learning for social scientists interested in applying such methods to experimental data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social sciences / Statistical methods / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Experiment</subfield><subfield code="0">(DE-588)4015999-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sozialwissenschaften</subfield><subfield code="0">(DE-588)4055916-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sozialwissenschaften</subfield><subfield code="0">(DE-588)4055916-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Experiment</subfield><subfield code="0">(DE-588)4015999-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">White, Mark H.</subfield><subfield code="c">II</subfield><subfield code="0">(DE-588)1321866550</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-009-16822-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009168236</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034314784</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009168236</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009168236</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO_Kauf23</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009168236</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBY_PDA_CBO_Kauf_24</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049052465 |
illustrated | Illustrated |
index_date | 2024-07-03T22:21:53Z |
indexdate | 2024-12-13T19:00:17Z |
institution | BVB |
isbn | 9781009168236 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034314784 |
oclc_num | 1390810626 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG DE-706 |
owner_facet | DE-12 DE-473 DE-BY-UBG DE-706 |
physical | 1 Online-Ressource (72 Seiten) Illustrationen, Diagramme |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO_Kauf23 ZDB-20-CBO UBY_PDA_CBO_Kauf_24 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge elements Elements in experimental political science |
spelling | Green, Jon 1991- Verfasser (DE-588)1298302021 aut Machine learning for experiments in the social sciences Jon Green, Mark H. White Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, Australia ; New Delhi, India ; Singapore Cambridge University Press 2023 1 Online-Ressource (72 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Cambridge elements Elements in experimental political science Literaturverzeichnis: Seite 65-72 Zusatzmaterial verfügbar unter: https://osf.io/paxhs/ Causal inference and machine learning are typically introduced in the social sciences separately as theoretically distinct methodological traditions. This volume provides theoretical and practical introductions to machine learning for social scientists interested in applying such methods to experimental data Social sciences / Statistical methods / Data processing Machine learning Experiment (DE-588)4015999-1 gnd rswk-swf Sozialwissenschaften (DE-588)4055916-6 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Sozialwissenschaften (DE-588)4055916-6 s Maschinelles Lernen (DE-588)4193754-5 s Experiment (DE-588)4015999-1 s DE-604 White, Mark H. II (DE-588)1321866550 aut Erscheint auch als Druck-Ausgabe, Paperback 978-1-009-16822-9 https://doi.org/10.1017/9781009168236 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Green, Jon 1991- White, Mark H. II Machine learning for experiments in the social sciences Social sciences / Statistical methods / Data processing Machine learning Experiment (DE-588)4015999-1 gnd Sozialwissenschaften (DE-588)4055916-6 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4015999-1 (DE-588)4055916-6 (DE-588)4193754-5 |
title | Machine learning for experiments in the social sciences |
title_auth | Machine learning for experiments in the social sciences |
title_exact_search | Machine learning for experiments in the social sciences |
title_exact_search_txtP | Machine learning for experiments in the social sciences |
title_full | Machine learning for experiments in the social sciences Jon Green, Mark H. White |
title_fullStr | Machine learning for experiments in the social sciences Jon Green, Mark H. White |
title_full_unstemmed | Machine learning for experiments in the social sciences Jon Green, Mark H. White |
title_short | Machine learning for experiments in the social sciences |
title_sort | machine learning for experiments in the social sciences |
topic | Social sciences / Statistical methods / Data processing Machine learning Experiment (DE-588)4015999-1 gnd Sozialwissenschaften (DE-588)4055916-6 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Social sciences / Statistical methods / Data processing Machine learning Experiment Sozialwissenschaften Maschinelles Lernen |
url | https://doi.org/10.1017/9781009168236 |
work_keys_str_mv | AT greenjon machinelearningforexperimentsinthesocialsciences AT whitemarkh machinelearningforexperimentsinthesocialsciences |