Dolbeault cohomology of weakly smooth forms on non-archimedean abelian varieties:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Regensburg
im Jahr 2023
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | 88 Seiten |
DOI: | 10.5283/epub.54465 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049050389 | ||
003 | DE-604 | ||
005 | 20231206 | ||
007 | t | ||
008 | 230714s2023 m||| 00||| eng d | ||
035 | |a (OCoLC)1390805611 | ||
035 | |a (DE-599)BVBBV049050389 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Prechtel, Miriam |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dolbeault cohomology of weakly smooth forms on non-archimedean abelian varieties |c vorgelegt von Miriam Prechtel aus München |
264 | 1 | |a Regensburg |c im Jahr 2023 | |
300 | |a 88 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Universität Regensburg |d 2023 | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.5283/epub.54465 |o urn:nbn:de:bvb:355-epub-544656 |
856 | 4 | 1 | |u https://doi.org/10.5283/epub.54465 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 1 | |u https://nbn-resolving.org/urn:nbn:de:bvb:355-epub-544656 |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034312754 |
Datensatz im Suchindex
_version_ | 1804185349649334272 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Prechtel, Miriam |
author_facet | Prechtel, Miriam |
author_role | aut |
author_sort | Prechtel, Miriam |
author_variant | m p mp |
building | Verbundindex |
bvnumber | BV049050389 |
collection | ebook |
ctrlnum | (OCoLC)1390805611 (DE-599)BVBBV049050389 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.5283/epub.54465 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01327nam a2200325 c 4500</leader><controlfield tag="001">BV049050389</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231206 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230714s2023 m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1390805611</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049050389</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Prechtel, Miriam</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dolbeault cohomology of weakly smooth forms on non-archimedean abelian varieties</subfield><subfield code="c">vorgelegt von Miriam Prechtel aus München</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Regensburg</subfield><subfield code="c">im Jahr 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">88 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Universität Regensburg</subfield><subfield code="d">2023</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.5283/epub.54465</subfield><subfield code="o">urn:nbn:de:bvb:355-epub-544656</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.5283/epub.54465</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:355-epub-544656</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034312754</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV049050389 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:21:19Z |
indexdate | 2024-07-10T09:53:49Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034312754 |
oclc_num | 1390805611 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | 88 Seiten |
psigel | ebook |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
record_format | marc |
spelling | Prechtel, Miriam Verfasser aut Dolbeault cohomology of weakly smooth forms on non-archimedean abelian varieties vorgelegt von Miriam Prechtel aus München Regensburg im Jahr 2023 88 Seiten txt rdacontent n rdamedia nc rdacarrier Dissertation Universität Regensburg 2023 (DE-588)4113937-9 Hochschulschrift gnd-content Erscheint auch als Online-Ausgabe 10.5283/epub.54465 urn:nbn:de:bvb:355-epub-544656 https://doi.org/10.5283/epub.54465 Verlag kostenfrei Volltext https://nbn-resolving.org/urn:nbn:de:bvb:355-epub-544656 Resolving-System kostenfrei Volltext |
spellingShingle | Prechtel, Miriam Dolbeault cohomology of weakly smooth forms on non-archimedean abelian varieties |
subject_GND | (DE-588)4113937-9 |
title | Dolbeault cohomology of weakly smooth forms on non-archimedean abelian varieties |
title_auth | Dolbeault cohomology of weakly smooth forms on non-archimedean abelian varieties |
title_exact_search | Dolbeault cohomology of weakly smooth forms on non-archimedean abelian varieties |
title_exact_search_txtP | Dolbeault cohomology of weakly smooth forms on non-archimedean abelian varieties |
title_full | Dolbeault cohomology of weakly smooth forms on non-archimedean abelian varieties vorgelegt von Miriam Prechtel aus München |
title_fullStr | Dolbeault cohomology of weakly smooth forms on non-archimedean abelian varieties vorgelegt von Miriam Prechtel aus München |
title_full_unstemmed | Dolbeault cohomology of weakly smooth forms on non-archimedean abelian varieties vorgelegt von Miriam Prechtel aus München |
title_short | Dolbeault cohomology of weakly smooth forms on non-archimedean abelian varieties |
title_sort | dolbeault cohomology of weakly smooth forms on non archimedean abelian varieties |
topic_facet | Hochschulschrift |
url | https://doi.org/10.5283/epub.54465 https://nbn-resolving.org/urn:nbn:de:bvb:355-epub-544656 |
work_keys_str_mv | AT prechtelmiriam dolbeaultcohomologyofweaklysmoothformsonnonarchimedeanabelianvarieties |