Trends of artificial intelligence and big data for E-health:
This book aims to present the impact of Artificial Intelligence (AI) and Big Data in healthcare for medical decision making and data analysis in myriad fields including Radiology, Radiomics, Radiogenomics, Oncology, Pharmacology, COVID-19 prognosis, Cardiac imaging, Neuroradiology, Psychiatry and ot...
Gespeichert in:
Weitere Verfasser: | , , , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2022]
|
Schriftenreihe: | Integrated Science
Volume 9 |
Schlagworte: | |
Online-Zugang: | Cover Inhaltsverzeichnis |
Zusammenfassung: | This book aims to present the impact of Artificial Intelligence (AI) and Big Data in healthcare for medical decision making and data analysis in myriad fields including Radiology, Radiomics, Radiogenomics, Oncology, Pharmacology, COVID-19 prognosis, Cardiac imaging, Neuroradiology, Psychiatry and others. This will include topics such as Artificial Intelligence of Thing (AIOT), Explainable Artificial Intelligence (XAI), Distributed learning, Blockchain of Internet of Things (BIOT), Cybersecurity, and Internet of (Medical) Things (IoTs). Healthcare providers will learn how to leverage Big Data analytics and AI as methodology for accurate analysis based on their clinical data repositories and clinical decision support. The capacity to recognize patterns and transform large amounts of data into usable information for precision medicine assists healthcare professionals in achieving these objectives. Intelligent Health has the potential to monitor patients at risk with underlying conditions and track their progress during therapy. Some of the greatest challenges in using these technologies are based on legal and ethical concerns of using medical data and adequately representing and servicing disparate patient populations. One major potential benefit of this technology is to make health systems more sustainable and standardized. Privacy and data security, establishing protocols, appropriate governance, and improving technologies will be among the crucial priorities for Digital Transformation in Healthcare |
Beschreibung: | x, 251 Seiten Illustrationen, Diagramme |
ISBN: | 9783031111983 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV049047657 | ||
003 | DE-604 | ||
005 | 20230728 | ||
007 | t | ||
008 | 230712s2022 a||| |||| 00||| eng d | ||
020 | |a 9783031111983 |c Gebunden : EUR 135,70 |9 978-3-031-11198-3 | ||
035 | |a (OCoLC)1392134542 | ||
035 | |a (DE-599)KXP1830599577 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-739 | ||
082 | 0 | |a 610.28563 | |
084 | |a ST 640 |0 (DE-625)143686: |2 rvk | ||
245 | 1 | 0 | |a Trends of artificial intelligence and big data for E-health |c Houneida Sakly, Kristen Yeom, Safwan Halabi, Mourad Said, Jayne Seekins, Moncef Tagina Editors |
264 | 1 | |a Cham, Switzerland |b Springer |c [2022] | |
300 | |a x, 251 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Integrated Science |v Volume 9 | |
520 | 3 | |a This book aims to present the impact of Artificial Intelligence (AI) and Big Data in healthcare for medical decision making and data analysis in myriad fields including Radiology, Radiomics, Radiogenomics, Oncology, Pharmacology, COVID-19 prognosis, Cardiac imaging, Neuroradiology, Psychiatry and others. This will include topics such as Artificial Intelligence of Thing (AIOT), Explainable Artificial Intelligence (XAI), Distributed learning, Blockchain of Internet of Things (BIOT), Cybersecurity, and Internet of (Medical) Things (IoTs). Healthcare providers will learn how to leverage Big Data analytics and AI as methodology for accurate analysis based on their clinical data repositories and clinical decision support. The capacity to recognize patterns and transform large amounts of data into usable information for precision medicine assists healthcare professionals in achieving these objectives. Intelligent Health has the potential to monitor patients at risk with underlying conditions and track their progress during therapy. Some of the greatest challenges in using these technologies are based on legal and ethical concerns of using medical data and adequately representing and servicing disparate patient populations. One major potential benefit of this technology is to make health systems more sustainable and standardized. Privacy and data security, establishing protocols, appropriate governance, and improving technologies will be among the crucial priorities for Digital Transformation in Healthcare | |
650 | 0 | 7 | |a Medizinische Informatik |0 (DE-588)4038261-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gesundheitswesen |0 (DE-588)4020775-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a E-Health |0 (DE-588)7542254-2 |2 gnd |9 rswk-swf |
653 | 0 | |a Algorithms & data structures | |
653 | 0 | |a Artificial intelligence | |
653 | 0 | |a COMPUTERS / Artificial Intelligence | |
653 | 0 | |a COMPUTERS / Information Theory | |
653 | 0 | |a DV-gestützte Biologie/Bioinformatik | |
653 | 0 | |a Datenbanken | |
653 | 0 | |a Gesundheitsfachberufe | |
653 | 0 | |a Gesundheitsökonomie | |
653 | 0 | |a Health economics | |
653 | 0 | |a MATHEMATICS / Probability & Statistics / General | |
653 | 0 | |a MEDICAL / Administration | |
653 | 0 | |a MEDICAL / General | |
653 | 0 | |a Medical research | |
653 | 0 | |a Medizinische Forschung | |
653 | 0 | |a Molecular biology | |
653 | 0 | |a Probability & statistics | |
653 | 0 | |a SCIENCE / Life Sciences / Anatomy & Physiology (see also Life Sciences / Human Anatomy & Physiology) | |
689 | 0 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 1 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 2 | |a Gesundheitswesen |0 (DE-588)4020775-4 |D s |
689 | 0 | 3 | |a E-Health |0 (DE-588)7542254-2 |D s |
689 | 0 | 4 | |a Medizinische Informatik |0 (DE-588)4038261-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sakly, Houneida |d ca. 20./21. Jh. |0 (DE-588)1297479459 |4 edt | |
700 | 1 | |a Yeom, Kristen |d ca. 20./21. Jh. |0 (DE-588)1297479653 |4 edt | |
700 | 1 | |a Halabi, Safwan |d ca. 20./21. Jh. |0 (DE-588)1297479742 |4 edt | |
700 | 1 | |a Said, Mourad |d ca. 20./21. Jh. |0 (DE-588)1297479815 |4 edt | |
700 | 1 | |a Seekins, Jayne |d ca. 20./21. Jh. |0 (DE-588)1297480422 |4 edt | |
700 | 1 | |a Tagina, Moncef |d ca. 20./21. Jh. |0 (DE-588)1297480996 |4 edt | |
830 | 0 | |a Integrated Science |v Volume 9 |w (DE-604)BV049070182 |9 9 | |
856 | 4 | |u http://www.dietmardreier.de/annot/4B56696D677C7C39353938303430317C7C434F50.jpg?sq=6 |x Verlag |3 Cover | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034310073&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-034310073 |
Datensatz im Suchindex
_version_ | 1804185345242169344 |
---|---|
adam_text | Contents AI and Big Data for Intelligent Health: Promise and Potential.............. Andre Lupp Mota, Suely Fazio Ferraciolli, Aline Sgnolf Ayres, Laura Lane Menezes Polsin, Claudia da Costa Leite, and Felipe Kitamura AI and Big Data for Cancer Segmentation, Detection and Prevention..................................................................................................... Zodwa Dlamini, Rodney Hull, Rahaba Marima, Amanda Skepu, Stylianos Makrogkikas, Elias P. Koumoulos, George Bakas, Ioannis Vamvakaris, Konstantinos N. Syrigos, George Evangelou, Aglaia Kavidopoulou, and Georgios Lolas Radiology, AI and Big Data: Challenges and Opportunities for Medical Imaging............................................................................................ Houneida Sakly, Aline Sgnolf Ayres, Suely Fazio Ferraciolli, Claudia da Costa Leite, Felipe Kitamura, and Mourad Said 1 15 33 Neuroradiology: Current Status and Future Prospects............................... Suely Fazio Ferraciolli, Andre Lupp Mota, Aline Sgnolf Ayres, Laura Lane Menezes Polsin, Felipe Kitamura, and Claudia da Costa Leite 57 Big Data and AI in Cardiac Imaging............................................................. Charitha D. Reddy 69 Artificial Intelligence and Big Data for COVID-19 Diagnosis................... Houneida Sakly, Ahmed A. Al-Sayed, Mourad Said, Chawki Loussaief, Jayne Seekins, and Rachid Sakly 83 AI and Big Data for Drug Discovery............................................................. Aglaia Kavidopoulou, Konstantinos N. Syrigos, Stylianos Makrogkikas, Zodwa Dlamini, Rodney
Hull, Rahaba Marima, Amanda Skepu, Elias P. Koumoulos, George Bakas, Ioannis Vamvakaris, George Evangelou, and Georgios Lolas 121
Blockchain Technologies for Internet of Medical Things (BIoMT) Based Healthcare Systems: A New Paradigm for COVID-19 Pandemic.................................................................................. Houneida Sakly, Mourad Said, Ahmed A. Al-Sayed, Chawki Loussaief, Rachid Sakly, and Jayne Seekins 139 AI and Big Data for Therapeutic Strategies in Psychiatry........................ Shankru Guggari 167 Distributed Learning in Healthcare................................................................ Anup Tuladhar, Deepthi Rajashekar, and Nils D. Forkert 183 Cybersecurity in Healthcare.............................................................................. Brendan Kelly, Conor Quinn, Aonghus Lawlor, Ronan Killeen, and James Burrell 213 Radiology and Radiomics: Towards Oncology Prediction with IA and Big Data.......................................................................................... Aline Sgnolf Ayres, Suely Fazio Ferraciolli, Andre Lupp Mota, Laura Lane Menezes Polsin, and Claudia da Costa Leite General Conclusion.............................................................................................. 233 251
|
adam_txt |
Contents AI and Big Data for Intelligent Health: Promise and Potential. Andre Lupp Mota, Suely Fazio Ferraciolli, Aline Sgnolf Ayres, Laura Lane Menezes Polsin, Claudia da Costa Leite, and Felipe Kitamura AI and Big Data for Cancer Segmentation, Detection and Prevention. Zodwa Dlamini, Rodney Hull, Rahaba Marima, Amanda Skepu, Stylianos Makrogkikas, Elias P. Koumoulos, George Bakas, Ioannis Vamvakaris, Konstantinos N. Syrigos, George Evangelou, Aglaia Kavidopoulou, and Georgios Lolas Radiology, AI and Big Data: Challenges and Opportunities for Medical Imaging. Houneida Sakly, Aline Sgnolf Ayres, Suely Fazio Ferraciolli, Claudia da Costa Leite, Felipe Kitamura, and Mourad Said 1 15 33 Neuroradiology: Current Status and Future Prospects. Suely Fazio Ferraciolli, Andre Lupp Mota, Aline Sgnolf Ayres, Laura Lane Menezes Polsin, Felipe Kitamura, and Claudia da Costa Leite 57 Big Data and AI in Cardiac Imaging. Charitha D. Reddy 69 Artificial Intelligence and Big Data for COVID-19 Diagnosis. Houneida Sakly, Ahmed A. Al-Sayed, Mourad Said, Chawki Loussaief, Jayne Seekins, and Rachid Sakly 83 AI and Big Data for Drug Discovery. Aglaia Kavidopoulou, Konstantinos N. Syrigos, Stylianos Makrogkikas, Zodwa Dlamini, Rodney
Hull, Rahaba Marima, Amanda Skepu, Elias P. Koumoulos, George Bakas, Ioannis Vamvakaris, George Evangelou, and Georgios Lolas 121
Blockchain Technologies for Internet of Medical Things (BIoMT) Based Healthcare Systems: A New Paradigm for COVID-19 Pandemic. Houneida Sakly, Mourad Said, Ahmed A. Al-Sayed, Chawki Loussaief, Rachid Sakly, and Jayne Seekins 139 AI and Big Data for Therapeutic Strategies in Psychiatry. Shankru Guggari 167 Distributed Learning in Healthcare. Anup Tuladhar, Deepthi Rajashekar, and Nils D. Forkert 183 Cybersecurity in Healthcare. Brendan Kelly, Conor Quinn, Aonghus Lawlor, Ronan Killeen, and James Burrell 213 Radiology and Radiomics: Towards Oncology Prediction with IA and Big Data. Aline Sgnolf Ayres, Suely Fazio Ferraciolli, Andre Lupp Mota, Laura Lane Menezes Polsin, and Claudia da Costa Leite General Conclusion. 233 251 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Sakly, Houneida ca. 20./21. Jh Yeom, Kristen ca. 20./21. Jh Halabi, Safwan ca. 20./21. Jh Said, Mourad ca. 20./21. Jh Seekins, Jayne ca. 20./21. Jh Tagina, Moncef ca. 20./21. Jh |
author2_role | edt edt edt edt edt edt |
author2_variant | h s hs k y ky s h sh m s ms j s js m t mt |
author_GND | (DE-588)1297479459 (DE-588)1297479653 (DE-588)1297479742 (DE-588)1297479815 (DE-588)1297480422 (DE-588)1297480996 |
author_facet | Sakly, Houneida ca. 20./21. Jh Yeom, Kristen ca. 20./21. Jh Halabi, Safwan ca. 20./21. Jh Said, Mourad ca. 20./21. Jh Seekins, Jayne ca. 20./21. Jh Tagina, Moncef ca. 20./21. Jh |
building | Verbundindex |
bvnumber | BV049047657 |
classification_rvk | ST 640 |
ctrlnum | (OCoLC)1392134542 (DE-599)KXP1830599577 |
dewey-full | 610.28563 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 610 - Medicine and health |
dewey-raw | 610.28563 |
dewey-search | 610.28563 |
dewey-sort | 3610.28563 |
dewey-tens | 610 - Medicine and health |
discipline | Informatik Medizin |
discipline_str_mv | Informatik Medizin |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04772nam a2200733 cb4500</leader><controlfield tag="001">BV049047657</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230728 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230712s2022 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031111983</subfield><subfield code="c">Gebunden : EUR 135,70</subfield><subfield code="9">978-3-031-11198-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392134542</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1830599577</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610.28563</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 640</subfield><subfield code="0">(DE-625)143686:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trends of artificial intelligence and big data for E-health</subfield><subfield code="c">Houneida Sakly, Kristen Yeom, Safwan Halabi, Mourad Said, Jayne Seekins, Moncef Tagina Editors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 251 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Integrated Science</subfield><subfield code="v">Volume 9</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book aims to present the impact of Artificial Intelligence (AI) and Big Data in healthcare for medical decision making and data analysis in myriad fields including Radiology, Radiomics, Radiogenomics, Oncology, Pharmacology, COVID-19 prognosis, Cardiac imaging, Neuroradiology, Psychiatry and others. This will include topics such as Artificial Intelligence of Thing (AIOT), Explainable Artificial Intelligence (XAI), Distributed learning, Blockchain of Internet of Things (BIOT), Cybersecurity, and Internet of (Medical) Things (IoTs). Healthcare providers will learn how to leverage Big Data analytics and AI as methodology for accurate analysis based on their clinical data repositories and clinical decision support. The capacity to recognize patterns and transform large amounts of data into usable information for precision medicine assists healthcare professionals in achieving these objectives. Intelligent Health has the potential to monitor patients at risk with underlying conditions and track their progress during therapy. Some of the greatest challenges in using these technologies are based on legal and ethical concerns of using medical data and adequately representing and servicing disparate patient populations. One major potential benefit of this technology is to make health systems more sustainable and standardized. Privacy and data security, establishing protocols, appropriate governance, and improving technologies will be among the crucial priorities for Digital Transformation in Healthcare</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Medizinische Informatik</subfield><subfield code="0">(DE-588)4038261-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gesundheitswesen</subfield><subfield code="0">(DE-588)4020775-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">E-Health</subfield><subfield code="0">(DE-588)7542254-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Algorithms & data structures</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">COMPUTERS / Artificial Intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">COMPUTERS / Information Theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">DV-gestützte Biologie/Bioinformatik</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Datenbanken</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Gesundheitsfachberufe</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Gesundheitsökonomie</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Health economics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">MATHEMATICS / Probability & Statistics / General</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">MEDICAL / Administration</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">MEDICAL / General</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medical research</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medizinische Forschung</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Molecular biology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probability & statistics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">SCIENCE / Life Sciences / Anatomy & Physiology (see also Life Sciences / Human Anatomy & Physiology)</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Gesundheitswesen</subfield><subfield code="0">(DE-588)4020775-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">E-Health</subfield><subfield code="0">(DE-588)7542254-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Medizinische Informatik</subfield><subfield code="0">(DE-588)4038261-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sakly, Houneida</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1297479459</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yeom, Kristen</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1297479653</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Halabi, Safwan</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1297479742</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Said, Mourad</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1297479815</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seekins, Jayne</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1297480422</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tagina, Moncef</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1297480996</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Integrated Science</subfield><subfield code="v">Volume 9</subfield><subfield code="w">(DE-604)BV049070182</subfield><subfield code="9">9</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.dietmardreier.de/annot/4B56696D677C7C39353938303430317C7C434F50.jpg?sq=6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Cover</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034310073&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034310073</subfield></datafield></record></collection> |
id | DE-604.BV049047657 |
illustrated | Illustrated |
index_date | 2024-07-03T22:20:41Z |
indexdate | 2024-07-10T09:53:45Z |
institution | BVB |
isbn | 9783031111983 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034310073 |
oclc_num | 1392134542 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | x, 251 Seiten Illustrationen, Diagramme |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer |
record_format | marc |
series | Integrated Science |
series2 | Integrated Science |
spelling | Trends of artificial intelligence and big data for E-health Houneida Sakly, Kristen Yeom, Safwan Halabi, Mourad Said, Jayne Seekins, Moncef Tagina Editors Cham, Switzerland Springer [2022] x, 251 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Integrated Science Volume 9 This book aims to present the impact of Artificial Intelligence (AI) and Big Data in healthcare for medical decision making and data analysis in myriad fields including Radiology, Radiomics, Radiogenomics, Oncology, Pharmacology, COVID-19 prognosis, Cardiac imaging, Neuroradiology, Psychiatry and others. This will include topics such as Artificial Intelligence of Thing (AIOT), Explainable Artificial Intelligence (XAI), Distributed learning, Blockchain of Internet of Things (BIOT), Cybersecurity, and Internet of (Medical) Things (IoTs). Healthcare providers will learn how to leverage Big Data analytics and AI as methodology for accurate analysis based on their clinical data repositories and clinical decision support. The capacity to recognize patterns and transform large amounts of data into usable information for precision medicine assists healthcare professionals in achieving these objectives. Intelligent Health has the potential to monitor patients at risk with underlying conditions and track their progress during therapy. Some of the greatest challenges in using these technologies are based on legal and ethical concerns of using medical data and adequately representing and servicing disparate patient populations. One major potential benefit of this technology is to make health systems more sustainable and standardized. Privacy and data security, establishing protocols, appropriate governance, and improving technologies will be among the crucial priorities for Digital Transformation in Healthcare Medizinische Informatik (DE-588)4038261-8 gnd rswk-swf Big Data (DE-588)4802620-7 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Gesundheitswesen (DE-588)4020775-4 gnd rswk-swf E-Health (DE-588)7542254-2 gnd rswk-swf Algorithms & data structures Artificial intelligence COMPUTERS / Artificial Intelligence COMPUTERS / Information Theory DV-gestützte Biologie/Bioinformatik Datenbanken Gesundheitsfachberufe Gesundheitsökonomie Health economics MATHEMATICS / Probability & Statistics / General MEDICAL / Administration MEDICAL / General Medical research Medizinische Forschung Molecular biology Probability & statistics SCIENCE / Life Sciences / Anatomy & Physiology (see also Life Sciences / Human Anatomy & Physiology) Künstliche Intelligenz (DE-588)4033447-8 s Big Data (DE-588)4802620-7 s Gesundheitswesen (DE-588)4020775-4 s E-Health (DE-588)7542254-2 s Medizinische Informatik (DE-588)4038261-8 s DE-604 Sakly, Houneida ca. 20./21. Jh. (DE-588)1297479459 edt Yeom, Kristen ca. 20./21. Jh. (DE-588)1297479653 edt Halabi, Safwan ca. 20./21. Jh. (DE-588)1297479742 edt Said, Mourad ca. 20./21. Jh. (DE-588)1297479815 edt Seekins, Jayne ca. 20./21. Jh. (DE-588)1297480422 edt Tagina, Moncef ca. 20./21. Jh. (DE-588)1297480996 edt Integrated Science Volume 9 (DE-604)BV049070182 9 http://www.dietmardreier.de/annot/4B56696D677C7C39353938303430317C7C434F50.jpg?sq=6 Verlag Cover Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034310073&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Trends of artificial intelligence and big data for E-health Integrated Science Medizinische Informatik (DE-588)4038261-8 gnd Big Data (DE-588)4802620-7 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Gesundheitswesen (DE-588)4020775-4 gnd E-Health (DE-588)7542254-2 gnd |
subject_GND | (DE-588)4038261-8 (DE-588)4802620-7 (DE-588)4033447-8 (DE-588)4020775-4 (DE-588)7542254-2 |
title | Trends of artificial intelligence and big data for E-health |
title_auth | Trends of artificial intelligence and big data for E-health |
title_exact_search | Trends of artificial intelligence and big data for E-health |
title_exact_search_txtP | Trends of artificial intelligence and big data for E-health |
title_full | Trends of artificial intelligence and big data for E-health Houneida Sakly, Kristen Yeom, Safwan Halabi, Mourad Said, Jayne Seekins, Moncef Tagina Editors |
title_fullStr | Trends of artificial intelligence and big data for E-health Houneida Sakly, Kristen Yeom, Safwan Halabi, Mourad Said, Jayne Seekins, Moncef Tagina Editors |
title_full_unstemmed | Trends of artificial intelligence and big data for E-health Houneida Sakly, Kristen Yeom, Safwan Halabi, Mourad Said, Jayne Seekins, Moncef Tagina Editors |
title_short | Trends of artificial intelligence and big data for E-health |
title_sort | trends of artificial intelligence and big data for e health |
topic | Medizinische Informatik (DE-588)4038261-8 gnd Big Data (DE-588)4802620-7 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Gesundheitswesen (DE-588)4020775-4 gnd E-Health (DE-588)7542254-2 gnd |
topic_facet | Medizinische Informatik Big Data Künstliche Intelligenz Gesundheitswesen E-Health |
url | http://www.dietmardreier.de/annot/4B56696D677C7C39353938303430317C7C434F50.jpg?sq=6 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034310073&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV049070182 |
work_keys_str_mv | AT saklyhouneida trendsofartificialintelligenceandbigdataforehealth AT yeomkristen trendsofartificialintelligenceandbigdataforehealth AT halabisafwan trendsofartificialintelligenceandbigdataforehealth AT saidmourad trendsofartificialintelligenceandbigdataforehealth AT seekinsjayne trendsofartificialintelligenceandbigdataforehealth AT taginamoncef trendsofartificialintelligenceandbigdataforehealth |