Machine learning with Python cookbook: practical solutions from preprocessing to deep learning
This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems all the way f...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Sebastopol
O'Reilly
July 2023
|
Ausgabe: | Second edition |
Schlagworte: | |
Zusammenfassung: | This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems all the way from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. |
Beschreibung: | xiv, 398 Seiten Illustrationen, Diagramme |
ISBN: | 9781098135720 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049046116 | ||
003 | DE-604 | ||
005 | 20231114 | ||
007 | t | ||
008 | 230712s2023 a||| |||| 00||| eng d | ||
020 | |a 9781098135720 |9 978-1-098-13572-0 | ||
035 | |a (OCoLC)1401179653 | ||
035 | |a (DE-599)BVBBV049046116 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1102 |a DE-188 |a DE-29T |a DE-1049 | ||
050 | 0 | |a Q325.5 | |
050 | 0 | |a Q325.5 .A425 2018 | |
082 | 0 | |a 006.31 |2 23/ger | |
082 | 0 | |a 005.133 |2 23/ger | |
082 | 0 | |a 006.31 |2 23 | |
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
084 | |a 004 |2 sdnb | ||
100 | 1 | |a Albon, Chris |e Verfasser |0 (DE-588)1165271796 |4 aut | |
245 | 1 | 0 | |a Machine learning with Python cookbook |b practical solutions from preprocessing to deep learning |c Kyle Gallatin and Chris Albon |
250 | |a Second edition | ||
264 | 1 | |a Sebastopol |b O'Reilly |c July 2023 | |
264 | 4 | |c © 2023 | |
300 | |a xiv, 398 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
505 | 8 | |a You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naive Bayes, clustering, and tree-based models Saving and loading trained models from multiple frameworks | |
520 | 3 | |a This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems all the way from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Python (Computer program language) | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Gallatin, Kyle |e Verfasser |4 aut | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034308562 |
Datensatz im Suchindex
_version_ | 1804185342544183296 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Albon, Chris Gallatin, Kyle |
author_GND | (DE-588)1165271796 |
author_facet | Albon, Chris Gallatin, Kyle |
author_role | aut aut |
author_sort | Albon, Chris |
author_variant | c a ca k g kg |
building | Verbundindex |
bvnumber | BV049046116 |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 Q325.5 .A425 2018 |
callnumber-search | Q325.5 Q325.5 .A425 2018 |
callnumber-sort | Q 3325.5 |
callnumber-subject | Q - General Science |
classification_rvk | ST 250 ST 300 ST 302 |
contents | You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naive Bayes, clustering, and tree-based models Saving and loading trained models from multiple frameworks |
ctrlnum | (OCoLC)1401179653 (DE-599)BVBBV049046116 |
dewey-full | 006.31 005.133 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods 005 - Computer programming, programs, data, security |
dewey-raw | 006.31 005.133 |
dewey-search | 006.31 005.133 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02967nam a2200505 c 4500</leader><controlfield tag="001">BV049046116</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231114 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230712s2023 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098135720</subfield><subfield code="9">978-1-098-13572-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1401179653</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049046116</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1102</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-1049</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q325.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q325.5 .A425 2018</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.133</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Albon, Chris</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1165271796</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning with Python cookbook</subfield><subfield code="b">practical solutions from preprocessing to deep learning</subfield><subfield code="c">Kyle Gallatin and Chris Albon</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">July 2023</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 398 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naive Bayes, clustering, and tree-based models Saving and loading trained models from multiple frameworks</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems all the way from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gallatin, Kyle</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034308562</subfield></datafield></record></collection> |
id | DE-604.BV049046116 |
illustrated | Illustrated |
index_date | 2024-07-03T22:20:21Z |
indexdate | 2024-07-10T09:53:43Z |
institution | BVB |
isbn | 9781098135720 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034308562 |
oclc_num | 1401179653 |
open_access_boolean | |
owner | DE-1102 DE-188 DE-29T DE-1049 |
owner_facet | DE-1102 DE-188 DE-29T DE-1049 |
physical | xiv, 398 Seiten Illustrationen, Diagramme |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | O'Reilly |
record_format | marc |
spelling | Albon, Chris Verfasser (DE-588)1165271796 aut Machine learning with Python cookbook practical solutions from preprocessing to deep learning Kyle Gallatin and Chris Albon Second edition Sebastopol O'Reilly July 2023 © 2023 xiv, 398 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naive Bayes, clustering, and tree-based models Saving and loading trained models from multiple frameworks This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems all the way from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. Machine learning Python (Computer program language) Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Gallatin, Kyle Verfasser aut |
spellingShingle | Albon, Chris Gallatin, Kyle Machine learning with Python cookbook practical solutions from preprocessing to deep learning You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naive Bayes, clustering, and tree-based models Saving and loading trained models from multiple frameworks Machine learning Python (Computer program language) Maschinelles Lernen (DE-588)4193754-5 gnd Python Programmiersprache (DE-588)4434275-5 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4434275-5 |
title | Machine learning with Python cookbook practical solutions from preprocessing to deep learning |
title_auth | Machine learning with Python cookbook practical solutions from preprocessing to deep learning |
title_exact_search | Machine learning with Python cookbook practical solutions from preprocessing to deep learning |
title_exact_search_txtP | Machine learning with Python cookbook practical solutions from preprocessing to deep learning |
title_full | Machine learning with Python cookbook practical solutions from preprocessing to deep learning Kyle Gallatin and Chris Albon |
title_fullStr | Machine learning with Python cookbook practical solutions from preprocessing to deep learning Kyle Gallatin and Chris Albon |
title_full_unstemmed | Machine learning with Python cookbook practical solutions from preprocessing to deep learning Kyle Gallatin and Chris Albon |
title_short | Machine learning with Python cookbook |
title_sort | machine learning with python cookbook practical solutions from preprocessing to deep learning |
title_sub | practical solutions from preprocessing to deep learning |
topic | Machine learning Python (Computer program language) Maschinelles Lernen (DE-588)4193754-5 gnd Python Programmiersprache (DE-588)4434275-5 gnd |
topic_facet | Machine learning Python (Computer program language) Maschinelles Lernen Python Programmiersprache |
work_keys_str_mv | AT albonchris machinelearningwithpythoncookbookpracticalsolutionsfrompreprocessingtodeeplearning AT gallatinkyle machinelearningwithpythoncookbookpracticalsolutionsfrompreprocessingtodeeplearning |