Maximal subellipticity:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2023]
|
Schriftenreihe: | De Gruyter Studies in Mathematics
Volume 93 |
Schlagworte: | |
Online-Zugang: | https://www.degruyter.com/isbn/9783111085173 Inhaltsverzeichnis |
Beschreibung: | X, 756 Seiten 24 cm x 17 cm, 1353 g |
ISBN: | 9783111085173 3111085171 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV049044080 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 230711s2023 gw |||| 00||| eng d | ||
015 | |a 23,N07 |2 dnb | ||
016 | 7 | |a 1280637684 |2 DE-101 | |
020 | |a 9783111085173 |c : EUR 159.95 (DE) (freier Preis), EUR 159.95 (AT) (freier Preis) |9 978-3-11-108517-3 | ||
020 | |a 3111085171 |9 3-11-108517-1 | ||
024 | 3 | |a 9783111085173 | |
035 | |a (OCoLC)1390802136 | ||
035 | |a (DE-599)DNB1280637684 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29T | ||
084 | |8 1\p |a 510 |2 23sdnb | ||
100 | 1 | |a Street, Brian |d 1981- |e Verfasser |0 (DE-588)1074231368 |4 aut | |
245 | 1 | 0 | |a Maximal subellipticity |c Brian Street |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2023] | |
300 | |a X, 756 Seiten |c 24 cm x 17 cm, 1353 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter Studies in Mathematics |v Volume 93 | |
653 | |a subelliptisch | ||
653 | |a sub-riemann | ||
653 | |a volstandig nichtlinear | ||
653 | |a subelliptic, hypoelliptic, degenerate elliptic, sub-Riemannian, fully nonlinear | ||
653 | |a subelliptisch; sub-riemann; volstandig nichtlinear | ||
653 | |a subelliptic; hypoelliptic; degenerate elliptic; sub-Riemannian; fully nonlinear | ||
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-108594-4 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-108564-7 |
830 | 0 | |a De Gruyter Studies in Mathematics |v Volume 93 |w (DE-604)BV000005407 |9 93 | |
856 | 4 | 2 | |m X:MVB |u https://www.degruyter.com/isbn/9783111085173 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034306565&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-034306565 | ||
883 | 1 | |8 1\p |a vlb |d 20230210 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1804185339089125376 |
---|---|
adam_text | CONTENTS
1
INTRODUCTION
-
1
1.1
BASIC
DEFINITIONS
-
2
1.1.1
LINEAR
MAXIMALLY
SUBELLIPTIC
OPERATORS
-
5
1.1.2
NONLINEAR
MAXIMALLY
SUBELLIPTIC
OPERATORS
-
9
1.2
1.3
1.4
1.5
1.6
1.7
BACKGROUND:
ELLIPTIC
THEORY
-
12
CARNOT-CARATHEODORY
GEOMETRY
-
14
SINGULAR
INTEGRALS
-
15
FUNCTION
SPACES
-
17
LINEAR
THEORY
-
18
FULLY
NONLINEAR
THEORY
-
20
1.7.1
THE
INVERSE
FUNCTION
THEOREM
-
21
1.8
1.9
MULTI-PARAMETER
THEORY
-
24
THE
MAIN
TOOL:
SCALING
-
27
1.9.1
SCALING
FOR
ELLIPTIC
OPERATORS
-
28
1.9.2
SCALING
FOR
MAXIMALLY
SUBELLIPTIC
OPERATORS
-
28
1.10
OUTLINE
-
29
2
ELLIPTICITY
-
31
2.1
2.2
SOME
BASIC
FUNCTION
SPACES
-
32
PSEUDO-DIFFERENTIAL
OPERATORS
AND
THE
FOURIER
TRANSFORM
-
35
2.2.1
PSEUDO-DIFFERENTIAL
OPERATORS
WITHOUT
THE
FOURIER
TRANSFORM
-
37
2.2.2
ELLIPTIC
OPERATORS
AND
PSEUDO-DIFFERENTIAL
OPERATORS
-
42
2.3
SINGULAR
INTEGRAL
OPERATORS
-
47
2.3.1
LOCAL,
MATRIX-VALUED
OPERATORS
-
58
2.4
2.5
BESOV
AND
TRIEBEL-LIZORKIN
SPACES
-
59
ZYGMUND-HBLDER
SPACES
-
70
2.5.1
DECOMPOSITION
INTO
SMOOTH
FUNCTIONS
-
76
2.6
2.7
2.8
COMPOSITIONS
AND
PRODUCT
ZYGMUND-HDLDER
SPACES
-
78
LINEAR
ELLIPTIC
OPERATORS
-
87
NONLINEAR
ELLIPTIC
EQUATIONS
-
90
2.8.1
REDUCTION
I
-
93
2.8.2
REDUCTION
II
-
96
2.8.3
COMPLETION
OF
THE
PROOF
-
98
2.8.4
WEIGHTED
ESTIMATES
NEAR
THE
BOUNDARY
-
106
2.9
FURTHER
READING
AND
REFERENCES
-
111
3
VECTOR
FIELDS
AND
CARNOT-CARATHEODORY
GEOMETRY
-
114
3.1
MANIFOLDS
-
114
3.1.1
THE
EXPONENTIAL
MAP
-
116
3.1.2
THE
BAKER-CAMPBELL-HAUSDORFF
FORMULA
-
118
VI
-
CONTENTS
3.1.3
THE
FROBENIUS
THEOREM
-
119
3.2
THE
UNIT
SCALE
-
121
3.3
SCALING
AND
HORMANDER
VECTOR
FIELDS
-
123
3.3.1
SCALING
AND
MAXIMAL
SUBELLIPTICITY
-
127
3.4
FINITELY
GENERATED
SETTING
-
129
3.5
MULTI-PARAMETER
CARNOT-CARATHEODORY
GEOMETRY
-
135
3.5.1
AN
IMPORTANT
SPECIAL
CASE:
HORMANDER
S
CONDITION
-
137
3.5.2
DROPPING
PARAMETERS
-
138
3.6
THE
QUANTITATIVE
COORDINATE
SYSTEM
-
139
3.7
PROOFS
OF
SCALING
RESULTS
-
142
3.8
APPROXIMATELY
COMMUTING
VECTOR
FIELDS
-
148
3.9
INTEGRATING
OVER
LEAVES
-
155
3.10
INTEGRALS
AND
APPROXIMATELY
COMMUTING
VECTOR
FIELDS
-
158
3.11
MAXIMALFUNCTIONS
-
166
3.11.1
THE
FINITELY
GENERATED
SETTING
-
167
3.11.1.1
A
RESULT
ON
THE
UNIT
BALL
-
170
3.11.1.2
PROOF
OF
THEOREM
3.11.2
-
172
3.11.2
THE
HORMANDER
SETTING
-
174
3.12
APPROXIMATELY
COMMUTING
PARTIAL
DIFFERENTIAL
OPERATORS
-
177
3.13
FILTERED
MODULES
OF
VECTOR
FIELDS
-
186
3.14
CONTROL
OF
VECTOR
FIELDS
-
188
3.14.1
FURTHER
COMMENTS
ON
EQUIVALENCE
-
190
3.15
THE
MAIN
MULTI-PARAMETER
SETTING
-
194
3.15.1
THE
MULTI-PARAMETER
UNIT
SCALE
-
194
3.15.2
SCALING
-
195
3.15.3
QUANTITATIVE
SCALING
-
198
3.16
FURTHER
READING
AND
REFERENCES
-
203
4
PSEUDO-DIFFERENTIAL
OPERATORS
-
205
4.1
SYMBOLS
OF
PSEUDO-DIFFERENTIAL
OPERATORS
-
206
4.1.1
CONNECTION
WITH
STANDARD
PSEUDO-DIFFERENTIAL
OPERATORS
-
208
4.1.2
LITTLEWOOD-PALEY
DECOMPOSITION
OF
SYMBOLS
-
209
4.2
THE
EXPONENTIAL
MAP
-
215
4.3
LITTLEWOOD-PALEY
DECOMPOSITIONS
-
223
4.3.1
LEBESGUE
SPACE
BOUNDS
-
231
4.3.2
ADJOINTS
-
234
4.3.3
PROOF
OF
THE
LITTLEWOOD-PALEY
DECOMPOSITION
-
236
4.4
ADDING
PARAMETERS
-
238
4.5
THE
SUB-LAPLACIAN
-
239
4.5.1
THE
SUB-LAPLACIAN
IS
SUBELLIPTIC
-
240
4.5.2
HOMOGENEITY
-
250
4.5.3
NILPOTENT
LIE
GROUPS
-
254
CONTENTS
-
VII
4.6
FURTHER
READING
AND
REFERENCES
-
265
4.5.4
4.5.5
4.5.6
4.5.7
FREE
NILPOTENT
LIE
ALGEBRAS
-
256
THE
CALCULUS
-
257
THE
PARAMETRIX
-
262
LIMITATIONS
OF
THE
LIFTING
PROCEDURE
-
264
5
SINGULAR
INTEGRALS
-
267
5.1
THE
THREE
SETTINGS
-
267
5.1.1
THE
SINGLE-PARAMETER
SETTING
-
267
5.1.2
THE
MULTI-PARAMETER
HORMANDER
SETTING
-
268
5.1.3
THE
GENERAL
MULTI-PARAMETER
SETTING
-
269
5.2
THE
ALGEBRAS
OF
SINGULAR
INTEGRALS
-
270
5.2.1
THE
SINGLE-PARAMETER
SETTING
-
271
5.2.2
THE
MULTI-PARAMETER
HORMANDER
SETTING
-
274
5.2.3
THE
GENERAL
MULTI-PARAMETER
SETTING
-
276
5.3
NOTATION
-
279
5.4
PRE-ELEMENTARY
OPERATORS
-
280
5.5
ELEMENTARY
OPERATORS
-
289
5.6
PSEUDO-DIFFERENTIAL
OPERATORS
-
310
5.7
EQUIVALENCE
OF
THE
DEFINITIONS
-
316
5.8
BASIC
PROPERTIES
-
329
5.8.1
PSEUDO-LOCALITY
-
334
5.8.2
STANDARD
PSEUDO-DIFFERENTIAL
OPERATORS
-
338
5.9
AN
IMPORTANT
SUBALGEBRA
-
340
5.9.1
STANDARD
PSEUDO-DIFFERENTIAL
OPERATORS
-
353
5.10
L
P
BOUNDS
IN
THE
SINGLE-PARAMETER
CASE
-
355
5.10.1
A
UNIFORM
RESULT
-
358
5.10.2
BEYOND
HORMANDER
S
CONDITION
-
359
5.11
PARAMETRICES
-
369
5.11.1
PARAMETRICES
VIA
HEAT
EQUATIONS
-
370
5.11.2
PARAMETRICES
AND
OTHER
GEOMETRIES
-
378
5.12
SPECTRAL
MULTIPLIERS
-
387
5.13
FURTHER
READING
AND
REFERENCES
-
389
6
BESOV
AND
TRIEBEL-LIZORKIN
SPACES
-
393
6.1
INFORMAL
DESCRIPTION
OF
THE
NORMS
-
394
6.2
THE
SINGLE-PARAMETER
SPACES
-
396
6.3
THE
MULTI-PARAMETER
SPACES
-
400
6.4
THE
MAIN
ESTIMATE
-
402
6.5
SOME
BASIC
PROPERTIES
-
408
6.5.1
SMOOTH
FUNCTIONS
ARE
DENSE
-
422
6.6
THE
SINGLE-PARAMETER
SPACES,
REVISITED
-
425
VIII
-
CONTENTS
6.6.1
THE
CLASSICAL
SPACES
-
427
6.6.2
COMPARING
SINGLE-PARAMETER
SPACES
-
431
6.6.3
BOUNDEDNESS
OF
OPERATORS
IN
9
-
439
6.7
TRADING
DERIVATIVES
-
445
6.7.1
SHARPNESS
-
448
6.8
ADDING
PARAMETERS
-
458
6.9
SOBOLEV
SPACES
-
470
6.10
DISTRIBUTIONS
OF
FINITE
NORM
-
472
6.11
AN
EXPLICIT
CHOICE
OF
NORM
-
475
6.11.1
THE
UNIT
SCALE
-
479
6.11.2
SCALING
-
479
6.12
A
SPECTRAL
DEFINITION
-
481
6.13
FURTHER
QUESTIONS
-
482
6.14
FURTHER
READING
AND
REFERENCES
-
483
7
ZYGMUND-HDLDER
SPACES
-
486
7.1
THE
NORM
-
487
7.2
DECOMPOSITION
INTO
SMOOTH
FUNCTIONS
-
490
7.3
BOUNDS
OF
SOME
SUMS
-
492
7.4
ALGEBRA
-
494
7.5
COMPOSITIONS
-
496
7.5.1
PROPERTIES
OF
THE
PRODUCT
ZYGMUND-HBLDER
SPACES
-
499
7.5.2
PROOF
OF
THE
COMPOSITION
THEOREM
-
501
7.5.3
THE
CLASSICAL
PRODUCT
ZYGMUND-HBLDER
SPACES
-
513
7.6
ADDING
PARAMETERS
-
514
7.7
DIFFERENCE
CHARACTERIZATION
-
515
7.7.1
HOLDER
SPACES
-
530
8
LINEAR
MAXIMALLY
SUBELLIPTIC
OPERATORS
-
534
8.1
THE
MAIN
RESULT
-
534
8.2
FURTHER
REGULARITY
PROPERTIES
-
537
8.2.1
SINGLE-PARAMETER
FUNCTION
SPACES
-
537
8.2.2
STANDARD
FUNCTION
SPACES
-
541
8.2.3
MULTI-PARAMETER
FUNCTION
SPACES
-
546
8.3
A
PRIORI
ESTIMATES
-
551
8.3.1
SOME
PRELIMINARY
ESTIMATES
-
552
8.3.2
SUBELLIPTIC
ESTIMATES
-
554
8.3.3
EXPONENTIAL
ESTIMATES
-
566
8.4
HEAT
EQUATIONS
-
579
8.4.1
STEP
I:
THE
UNIT
SCALE
-
581
8.4.1.1
ON
DIAGONAL
BOUNDS
-
581
8.4.1.2
OFF-DIAGONAL
BOUNDS
-
582
CONTENTS
-
IX
8.4.2
STEP
II:
A
SINGLE
POINT
AND
SCALE
-
583
8.4.2.1
ON-DIAGONAL
BOUNDS
-
585
8.4.2.2
OFF-DIAGONAL
BOUNDS
-
587
8.4.3
STEP
III:
ALL
SCALES
-
588
8.5
PROOF
OF
THE
MAIN
RESULT
-
598
8.6
VECTOR
BUNDLES
-
604
8.7
QUANTITATIVE
REGULARITY
ESTIMATES
-
608
8.7.1
THE
UNIT
SCALE
-
608
8.7.2
A
SMALL
SCALE
-
610
8.8
REPRESENTATION
THEORY
AND
ROCKLAND
S
CONDITION
-
613
8.9
POSITIVE
DEFINITE
FORMS
-
614
8.10
FURTHER
READING
AND
REFERENCES
-
616
9
NONLINEAR
MAXIMALLY
SUBELLIPTIC
EQUATIONS
-
619
9.1
MAIN
QUALITATIVE
RESULTS
-
619
9.1.1
SINGLE-PARAMETER
RESULTS
-
620
9.1.1.1
QUALITATIVE
SCHAUDER
ESTIMATES
-
622
9.1.2
MULTI-PARAMETER
RESULTS
-
624
9.1.2.1
QUALITATIVE
SCHAUDER
ESTIMATES
-
627
9.2
MAIN
QUANTITATIVE
RESULT
-
627
9.2.1
VECTOR
FIELDS
AND
NORMS
-
630
9.2.2
BUMP
FUNCTIONS
-
632
9.2.3
SCALED
ESTIMATES
-
640
9.2.4
STEP
I:
PERTURBATION
OF
A
LINEAR
OPERATOR
-
646
9.2.5
STEP
II:
A
SIMPLER
FORM
-
656
9.2.6
SCALED
DECOMPOSITIONS
OF
ZYGMUND-HBLDER
FUNCTIONS
-
660
9.2.7
STEP
III:
COMPLETION
OF
THE
PROOF
-
662
9.3
WEIGHTED
ESTIMATES
NEAR
THE
BOUNDARY
-
675
9.3.1
WEIGHTED
SCHAUDER
ESTIMATES
NEAR
THE
BOUNDARY
-
684
9.4
EXAMPLES
-
685
9.4.1
SECOND-ORDER
EQUATIONS
-
685
9.4.2
THE
MONGE-AMPERE
EQUATION
-
687
9.4.3
HIGHER-ORDER
MONGE-AMPERE
EQUATIONS
-
689
9.4.4
HIGHER-ORDER
EQUATIONS
-
691
9.5
FURTHER
READING
AND
REFERENCES
-
693
A
CANONICAL
COORDINATES
-
695
A.1
BASIC
NOTATION
-
695
A.2
THE
MAIN
RESULTS
-
696
A.2.1
MORE
ON
THE
ASSUMPTIONS
-
698
A.2.2
DENSITIES
-
701
A.3
QUALITATIVE
CONSEQUENCES
-
703
X
-
CONTENTS
A.4
PROOFS
-
707
A.4.1
AN
ODE
-
707
A.4.1
.1
DERIVATION
OF
THE
ODE
-
707
A.4.1
.2
EXISTENCE,
UNIQUENESS,
AND
REGULARITY
-
710
A.4.2
A.4.3
AN
INVERSE
FUNCTION
THEOREM
-
716
PROOF
OF
THE
MAIN
RESULT
-
719
A.4.3.1
LINEARLY
INDEPENDENT
-
719
A.4.3.2
LINEARLY
DEPENDENT
-
724
A.4.4
A.4.5
DENSITIES
-
732
PROOF
OF
THEOREM
3.6.5
-
738
A.5
FURTHER
READING
AND
REFERENCES
-
738
BIBLIOGRAPHY
-
741
SYMBOL
INDEX
-
753
INDEX
-
755
|
adam_txt |
CONTENTS
1
INTRODUCTION
-
1
1.1
BASIC
DEFINITIONS
-
2
1.1.1
LINEAR
MAXIMALLY
SUBELLIPTIC
OPERATORS
-
5
1.1.2
NONLINEAR
MAXIMALLY
SUBELLIPTIC
OPERATORS
-
9
1.2
1.3
1.4
1.5
1.6
1.7
BACKGROUND:
ELLIPTIC
THEORY
-
12
CARNOT-CARATHEODORY
GEOMETRY
-
14
SINGULAR
INTEGRALS
-
15
FUNCTION
SPACES
-
17
LINEAR
THEORY
-
18
FULLY
NONLINEAR
THEORY
-
20
1.7.1
THE
INVERSE
FUNCTION
THEOREM
-
21
1.8
1.9
MULTI-PARAMETER
THEORY
-
24
THE
MAIN
TOOL:
SCALING
-
27
1.9.1
SCALING
FOR
ELLIPTIC
OPERATORS
-
28
1.9.2
SCALING
FOR
MAXIMALLY
SUBELLIPTIC
OPERATORS
-
28
1.10
OUTLINE
-
29
2
ELLIPTICITY
-
31
2.1
2.2
SOME
BASIC
FUNCTION
SPACES
-
32
PSEUDO-DIFFERENTIAL
OPERATORS
AND
THE
FOURIER
TRANSFORM
-
35
2.2.1
PSEUDO-DIFFERENTIAL
OPERATORS
WITHOUT
THE
FOURIER
TRANSFORM
-
37
2.2.2
ELLIPTIC
OPERATORS
AND
PSEUDO-DIFFERENTIAL
OPERATORS
-
42
2.3
SINGULAR
INTEGRAL
OPERATORS
-
47
2.3.1
LOCAL,
MATRIX-VALUED
OPERATORS
-
58
2.4
2.5
BESOV
AND
TRIEBEL-LIZORKIN
SPACES
-
59
ZYGMUND-HBLDER
SPACES
-
70
2.5.1
DECOMPOSITION
INTO
SMOOTH
FUNCTIONS
-
76
2.6
2.7
2.8
COMPOSITIONS
AND
PRODUCT
ZYGMUND-HDLDER
SPACES
-
78
LINEAR
ELLIPTIC
OPERATORS
-
87
NONLINEAR
ELLIPTIC
EQUATIONS
-
90
2.8.1
REDUCTION
I
-
93
2.8.2
REDUCTION
II
-
96
2.8.3
COMPLETION
OF
THE
PROOF
-
98
2.8.4
WEIGHTED
ESTIMATES
NEAR
THE
BOUNDARY
-
106
2.9
FURTHER
READING
AND
REFERENCES
-
111
3
VECTOR
FIELDS
AND
CARNOT-CARATHEODORY
GEOMETRY
-
114
3.1
MANIFOLDS
-
114
3.1.1
THE
EXPONENTIAL
MAP
-
116
3.1.2
THE
BAKER-CAMPBELL-HAUSDORFF
FORMULA
-
118
VI
-
CONTENTS
3.1.3
THE
FROBENIUS
THEOREM
-
119
3.2
THE
UNIT
SCALE
-
121
3.3
SCALING
AND
HORMANDER
VECTOR
FIELDS
-
123
3.3.1
SCALING
AND
MAXIMAL
SUBELLIPTICITY
-
127
3.4
FINITELY
GENERATED
SETTING
-
129
3.5
MULTI-PARAMETER
CARNOT-CARATHEODORY
GEOMETRY
-
135
3.5.1
AN
IMPORTANT
SPECIAL
CASE:
HORMANDER
'
S
CONDITION
-
137
3.5.2
DROPPING
PARAMETERS
-
138
3.6
THE
QUANTITATIVE
COORDINATE
SYSTEM
-
139
3.7
PROOFS
OF
SCALING
RESULTS
-
142
3.8
APPROXIMATELY
COMMUTING
VECTOR
FIELDS
-
148
3.9
INTEGRATING
OVER
LEAVES
-
155
3.10
INTEGRALS
AND
APPROXIMATELY
COMMUTING
VECTOR
FIELDS
-
158
3.11
MAXIMALFUNCTIONS
-
166
3.11.1
THE
FINITELY
GENERATED
SETTING
-
167
3.11.1.1
A
RESULT
ON
THE
UNIT
BALL
-
170
3.11.1.2
PROOF
OF
THEOREM
3.11.2
-
172
3.11.2
THE
HORMANDER
SETTING
-
174
3.12
APPROXIMATELY
COMMUTING
PARTIAL
DIFFERENTIAL
OPERATORS
-
177
3.13
FILTERED
MODULES
OF
VECTOR
FIELDS
-
186
3.14
CONTROL
OF
VECTOR
FIELDS
-
188
3.14.1
FURTHER
COMMENTS
ON
EQUIVALENCE
-
190
3.15
THE
MAIN
MULTI-PARAMETER
SETTING
-
194
3.15.1
THE
MULTI-PARAMETER
UNIT
SCALE
-
194
3.15.2
SCALING
-
195
3.15.3
QUANTITATIVE
SCALING
-
198
3.16
FURTHER
READING
AND
REFERENCES
-
203
4
PSEUDO-DIFFERENTIAL
OPERATORS
-
205
4.1
SYMBOLS
OF
PSEUDO-DIFFERENTIAL
OPERATORS
-
206
4.1.1
CONNECTION
WITH
STANDARD
PSEUDO-DIFFERENTIAL
OPERATORS
-
208
4.1.2
LITTLEWOOD-PALEY
DECOMPOSITION
OF
SYMBOLS
-
209
4.2
THE
EXPONENTIAL
MAP
-
215
4.3
LITTLEWOOD-PALEY
DECOMPOSITIONS
-
223
4.3.1
LEBESGUE
SPACE
BOUNDS
-
231
4.3.2
ADJOINTS
-
234
4.3.3
PROOF
OF
THE
LITTLEWOOD-PALEY
DECOMPOSITION
-
236
4.4
ADDING
PARAMETERS
-
238
4.5
THE
SUB-LAPLACIAN
-
239
4.5.1
THE
SUB-LAPLACIAN
IS
SUBELLIPTIC
-
240
4.5.2
HOMOGENEITY
-
250
4.5.3
NILPOTENT
LIE
GROUPS
-
254
CONTENTS
-
VII
4.6
FURTHER
READING
AND
REFERENCES
-
265
4.5.4
4.5.5
4.5.6
4.5.7
FREE
NILPOTENT
LIE
ALGEBRAS
-
256
THE
CALCULUS
-
257
THE
PARAMETRIX
-
262
LIMITATIONS
OF
THE
LIFTING
PROCEDURE
-
264
5
SINGULAR
INTEGRALS
-
267
5.1
THE
THREE
SETTINGS
-
267
5.1.1
THE
SINGLE-PARAMETER
SETTING
-
267
5.1.2
THE
MULTI-PARAMETER
HORMANDER
SETTING
-
268
5.1.3
THE
GENERAL
MULTI-PARAMETER
SETTING
-
269
5.2
THE
ALGEBRAS
OF
SINGULAR
INTEGRALS
-
270
5.2.1
THE
SINGLE-PARAMETER
SETTING
-
271
5.2.2
THE
MULTI-PARAMETER
HORMANDER
SETTING
-
274
5.2.3
THE
GENERAL
MULTI-PARAMETER
SETTING
-
276
5.3
NOTATION
-
279
5.4
PRE-ELEMENTARY
OPERATORS
-
280
5.5
ELEMENTARY
OPERATORS
-
289
5.6
PSEUDO-DIFFERENTIAL
OPERATORS
-
310
5.7
EQUIVALENCE
OF
THE
DEFINITIONS
-
316
5.8
BASIC
PROPERTIES
-
329
5.8.1
PSEUDO-LOCALITY
-
334
5.8.2
STANDARD
PSEUDO-DIFFERENTIAL
OPERATORS
-
338
5.9
AN
IMPORTANT
SUBALGEBRA
-
340
5.9.1
STANDARD
PSEUDO-DIFFERENTIAL
OPERATORS
-
353
5.10
L
P
BOUNDS
IN
THE
SINGLE-PARAMETER
CASE
-
355
5.10.1
A
UNIFORM
RESULT
-
358
5.10.2
BEYOND
HORMANDER'
S
CONDITION
-
359
5.11
PARAMETRICES
-
369
5.11.1
PARAMETRICES
VIA
HEAT
EQUATIONS
-
370
5.11.2
PARAMETRICES
AND
OTHER
GEOMETRIES
-
378
5.12
SPECTRAL
MULTIPLIERS
-
387
5.13
FURTHER
READING
AND
REFERENCES
-
389
6
BESOV
AND
TRIEBEL-LIZORKIN
SPACES
-
393
6.1
INFORMAL
DESCRIPTION
OF
THE
NORMS
-
394
6.2
THE
SINGLE-PARAMETER
SPACES
-
396
6.3
THE
MULTI-PARAMETER
SPACES
-
400
6.4
THE
MAIN
ESTIMATE
-
402
6.5
SOME
BASIC
PROPERTIES
-
408
6.5.1
SMOOTH
FUNCTIONS
ARE
DENSE
-
422
6.6
THE
SINGLE-PARAMETER
SPACES,
REVISITED
-
425
VIII
-
CONTENTS
6.6.1
THE
CLASSICAL
SPACES
-
427
6.6.2
COMPARING
SINGLE-PARAMETER
SPACES
-
431
6.6.3
BOUNDEDNESS
OF
OPERATORS
IN
9
-
439
6.7
TRADING
DERIVATIVES
-
445
6.7.1
SHARPNESS
-
448
6.8
ADDING
PARAMETERS
-
458
6.9
SOBOLEV
SPACES
-
470
6.10
DISTRIBUTIONS
OF
FINITE
NORM
-
472
6.11
AN
EXPLICIT
CHOICE
OF
NORM
-
475
6.11.1
THE
UNIT
SCALE
-
479
6.11.2
SCALING
-
479
6.12
A
SPECTRAL
DEFINITION
-
481
6.13
FURTHER
QUESTIONS
-
482
6.14
FURTHER
READING
AND
REFERENCES
-
483
7
ZYGMUND-HDLDER
SPACES
-
486
7.1
THE
NORM
-
487
7.2
DECOMPOSITION
INTO
SMOOTH
FUNCTIONS
-
490
7.3
BOUNDS
OF
SOME
SUMS
-
492
7.4
ALGEBRA
-
494
7.5
COMPOSITIONS
-
496
7.5.1
PROPERTIES
OF
THE
PRODUCT
ZYGMUND-HBLDER
SPACES
-
499
7.5.2
PROOF
OF
THE
COMPOSITION
THEOREM
-
501
7.5.3
THE
CLASSICAL
PRODUCT
ZYGMUND-HBLDER
SPACES
-
513
7.6
ADDING
PARAMETERS
-
514
7.7
DIFFERENCE
CHARACTERIZATION
-
515
7.7.1
HOLDER
SPACES
-
530
8
LINEAR
MAXIMALLY
SUBELLIPTIC
OPERATORS
-
534
8.1
THE
MAIN
RESULT
-
534
8.2
FURTHER
REGULARITY
PROPERTIES
-
537
8.2.1
SINGLE-PARAMETER
FUNCTION
SPACES
-
537
8.2.2
STANDARD
FUNCTION
SPACES
-
541
8.2.3
MULTI-PARAMETER
FUNCTION
SPACES
-
546
8.3
A
PRIORI
ESTIMATES
-
551
8.3.1
SOME
PRELIMINARY
ESTIMATES
-
552
8.3.2
SUBELLIPTIC
ESTIMATES
-
554
8.3.3
EXPONENTIAL
ESTIMATES
-
566
8.4
HEAT
EQUATIONS
-
579
8.4.1
STEP
I:
THE
UNIT
SCALE
-
581
8.4.1.1
ON
DIAGONAL
BOUNDS
-
581
8.4.1.2
OFF-DIAGONAL
BOUNDS
-
582
CONTENTS
-
IX
8.4.2
STEP
II:
A
SINGLE
POINT
AND
SCALE
-
583
8.4.2.1
ON-DIAGONAL
BOUNDS
-
585
8.4.2.2
OFF-DIAGONAL
BOUNDS
-
587
8.4.3
STEP
III:
ALL
SCALES
-
588
8.5
PROOF
OF
THE
MAIN
RESULT
-
598
8.6
VECTOR
BUNDLES
-
604
8.7
QUANTITATIVE
REGULARITY
ESTIMATES
-
608
8.7.1
THE
UNIT
SCALE
-
608
8.7.2
A
SMALL
SCALE
-
610
8.8
REPRESENTATION
THEORY
AND
ROCKLAND
'
S
CONDITION
-
613
8.9
POSITIVE
DEFINITE
FORMS
-
614
8.10
FURTHER
READING
AND
REFERENCES
-
616
9
NONLINEAR
MAXIMALLY
SUBELLIPTIC
EQUATIONS
-
619
9.1
MAIN
QUALITATIVE
RESULTS
-
619
9.1.1
SINGLE-PARAMETER
RESULTS
-
620
9.1.1.1
QUALITATIVE
SCHAUDER
ESTIMATES
-
622
9.1.2
MULTI-PARAMETER
RESULTS
-
624
9.1.2.1
QUALITATIVE
SCHAUDER
ESTIMATES
-
627
9.2
MAIN
QUANTITATIVE
RESULT
-
627
9.2.1
VECTOR
FIELDS
AND
NORMS
-
630
9.2.2
BUMP
FUNCTIONS
-
632
9.2.3
SCALED
ESTIMATES
-
640
9.2.4
STEP
I:
PERTURBATION
OF
A
LINEAR
OPERATOR
-
646
9.2.5
STEP
II:
A
SIMPLER
FORM
-
656
9.2.6
SCALED
DECOMPOSITIONS
OF
ZYGMUND-HBLDER
FUNCTIONS
-
660
9.2.7
STEP
III:
COMPLETION
OF
THE
PROOF
-
662
9.3
WEIGHTED
ESTIMATES
NEAR
THE
BOUNDARY
-
675
9.3.1
WEIGHTED
SCHAUDER
ESTIMATES
NEAR
THE
BOUNDARY
-
684
9.4
EXAMPLES
-
685
9.4.1
SECOND-ORDER
EQUATIONS
-
685
9.4.2
THE
MONGE-AMPERE
EQUATION
-
687
9.4.3
HIGHER-ORDER
MONGE-AMPERE
EQUATIONS
-
689
9.4.4
HIGHER-ORDER
EQUATIONS
-
691
9.5
FURTHER
READING
AND
REFERENCES
-
693
A
CANONICAL
COORDINATES
-
695
A.1
BASIC
NOTATION
-
695
A.2
THE
MAIN
RESULTS
-
696
A.2.1
MORE
ON
THE
ASSUMPTIONS
-
698
A.2.2
DENSITIES
-
701
A.3
QUALITATIVE
CONSEQUENCES
-
703
X
-
CONTENTS
A.4
PROOFS
-
707
A.4.1
AN
ODE
-
707
A.4.1
.1
DERIVATION
OF
THE
ODE
-
707
A.4.1
.2
EXISTENCE,
UNIQUENESS,
AND
REGULARITY
-
710
A.4.2
A.4.3
AN
INVERSE
FUNCTION
THEOREM
-
716
PROOF
OF
THE
MAIN
RESULT
-
719
A.4.3.1
LINEARLY
INDEPENDENT
-
719
A.4.3.2
LINEARLY
DEPENDENT
-
724
A.4.4
A.4.5
DENSITIES
-
732
PROOF
OF
THEOREM
3.6.5
-
738
A.5
FURTHER
READING
AND
REFERENCES
-
738
BIBLIOGRAPHY
-
741
SYMBOL
INDEX
-
753
INDEX
-
755 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Street, Brian 1981- |
author_GND | (DE-588)1074231368 |
author_facet | Street, Brian 1981- |
author_role | aut |
author_sort | Street, Brian 1981- |
author_variant | b s bs |
building | Verbundindex |
bvnumber | BV049044080 |
ctrlnum | (OCoLC)1390802136 (DE-599)DNB1280637684 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02122nam a22004938cb4500</leader><controlfield tag="001">BV049044080</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230711s2023 gw |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,N07</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1280637684</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111085173</subfield><subfield code="c">: EUR 159.95 (DE) (freier Preis), EUR 159.95 (AT) (freier Preis)</subfield><subfield code="9">978-3-11-108517-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3111085171</subfield><subfield code="9">3-11-108517-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783111085173</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1390802136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1280637684</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">510</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Street, Brian</subfield><subfield code="d">1981-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1074231368</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maximal subellipticity</subfield><subfield code="c">Brian Street</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 756 Seiten</subfield><subfield code="c">24 cm x 17 cm, 1353 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics</subfield><subfield code="v">Volume 93</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">subelliptisch</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">sub-riemann</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">volstandig nichtlinear</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">subelliptic, hypoelliptic, degenerate elliptic, sub-Riemannian, fully nonlinear</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">subelliptisch; sub-riemann; volstandig nichtlinear</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">subelliptic; hypoelliptic; degenerate elliptic; sub-Riemannian; fully nonlinear</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-108594-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-108564-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter Studies in Mathematics</subfield><subfield code="v">Volume 93</subfield><subfield code="w">(DE-604)BV000005407</subfield><subfield code="9">93</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">https://www.degruyter.com/isbn/9783111085173</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034306565&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034306565</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20230210</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
id | DE-604.BV049044080 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:19:54Z |
indexdate | 2024-07-10T09:53:39Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783111085173 3111085171 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034306565 |
oclc_num | 1390802136 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | X, 756 Seiten 24 cm x 17 cm, 1353 g |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter Studies in Mathematics |
series2 | De Gruyter Studies in Mathematics |
spelling | Street, Brian 1981- Verfasser (DE-588)1074231368 aut Maximal subellipticity Brian Street Berlin ; Boston De Gruyter [2023] X, 756 Seiten 24 cm x 17 cm, 1353 g txt rdacontent n rdamedia nc rdacarrier De Gruyter Studies in Mathematics Volume 93 subelliptisch sub-riemann volstandig nichtlinear subelliptic, hypoelliptic, degenerate elliptic, sub-Riemannian, fully nonlinear subelliptisch; sub-riemann; volstandig nichtlinear subelliptic; hypoelliptic; degenerate elliptic; sub-Riemannian; fully nonlinear Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als Online-Ausgabe, EPUB 978-3-11-108594-4 Erscheint auch als Online-Ausgabe, PDF 978-3-11-108564-7 De Gruyter Studies in Mathematics Volume 93 (DE-604)BV000005407 93 X:MVB https://www.degruyter.com/isbn/9783111085173 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034306565&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20230210 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Street, Brian 1981- Maximal subellipticity De Gruyter Studies in Mathematics |
title | Maximal subellipticity |
title_auth | Maximal subellipticity |
title_exact_search | Maximal subellipticity |
title_exact_search_txtP | Maximal subellipticity |
title_full | Maximal subellipticity Brian Street |
title_fullStr | Maximal subellipticity Brian Street |
title_full_unstemmed | Maximal subellipticity Brian Street |
title_short | Maximal subellipticity |
title_sort | maximal subellipticity |
url | https://www.degruyter.com/isbn/9783111085173 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034306565&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000005407 |
work_keys_str_mv | AT streetbrian maximalsubellipticity AT walterdegruytergmbhcokg maximalsubellipticity |