AI techniques for renewable source integration and battery charging methods in electric vehicle applications:
Artificial intelligence techniques applied in the power system sector make the prediction of renewable power source generation and demand more efficient and effective. Additionally, since renewable sources are intermittent in nature, it is necessary to predict and analyze the data of input sources....
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hershey, PA
IGI Global
[2023]
|
Schriftenreihe: | Advances in civil and industrial engineering (ACIE) book series
Premier reference source |
Schlagworte: | |
Zusammenfassung: | Artificial intelligence techniques applied in the power system sector make the prediction of renewable power source generation and demand more efficient and effective. Additionally, since renewable sources are intermittent in nature, it is necessary to predict and analyze the data of input sources. Hence, further study on the prediction and data analysis of renewable energy sources for sustainable development is required.AI Techniques for Renewable Source Integration and Battery Charging Methods in Electric Vehicle Applications focuses on artificial intelligence techniques for the evolving power system field, electric vehicle market, energy storage elements, and renewable energy source integration as distributed generators. Covering key topics such as deep learning, artificial intelligence, and smart solar energy, this premier reference source is ideal for environmentalists, computer scientists, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students |
Beschreibung: | xix, 288 Seiten Illustrationen, Diagramme 279 mm |
ISBN: | 9781668488171 9781668488164 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049043749 | ||
003 | DE-604 | ||
005 | 20230912 | ||
007 | t | ||
008 | 230710s2023 a||| |||| 00||| eng d | ||
020 | |a 9781668488171 |c paperback |9 978-1-6684-8817-1 | ||
020 | |a 9781668488164 |c hardcover |9 978-1-6684-8816-4 | ||
024 | 3 | |a 9781668488171 | |
035 | |a (OCoLC)1401178181 | ||
035 | |a (DE-599)BVBBV049043749 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
245 | 1 | 0 | |a AI techniques for renewable source integration and battery charging methods in electric vehicle applications |c S. Angalaeswari, T. Deepa, L. Ashok Kumar |
264 | 1 | |a Hershey, PA |b IGI Global |c [2023] | |
300 | |a xix, 288 Seiten |b Illustrationen, Diagramme |c 279 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Advances in civil and industrial engineering (ACIE) book series | |
490 | 0 | |a Premier reference source | |
520 | |a Artificial intelligence techniques applied in the power system sector make the prediction of renewable power source generation and demand more efficient and effective. Additionally, since renewable sources are intermittent in nature, it is necessary to predict and analyze the data of input sources. Hence, further study on the prediction and data analysis of renewable energy sources for sustainable development is required.AI Techniques for Renewable Source Integration and Battery Charging Methods in Electric Vehicle Applications focuses on artificial intelligence techniques for the evolving power system field, electric vehicle market, energy storage elements, and renewable energy source integration as distributed generators. Covering key topics such as deep learning, artificial intelligence, and smart solar energy, this premier reference source is ideal for environmentalists, computer scientists, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students | ||
650 | 4 | |a bicssc / Electrical engineering | |
650 | 4 | |a bicssc / Alternative & renewable energy sources & technology | |
650 | 4 | |a bicssc / Artificial intelligence | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
700 | 1 | |a Angalaeswari, S. |4 edt | |
700 | 1 | |a Deepa, T. |4 edt | |
700 | 1 | |a Kumar, L. Ashok |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 9781-6684-8818-8 |
999 | |a oai:aleph.bib-bvb.de:BVB01-034306237 |
Datensatz im Suchindex
_version_ | 1804185338457882624 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Angalaeswari, S. Deepa, T. Kumar, L. Ashok |
author2_role | edt edt edt |
author2_variant | s a sa t d td l a k la lak |
author_facet | Angalaeswari, S. Deepa, T. Kumar, L. Ashok |
building | Verbundindex |
bvnumber | BV049043749 |
ctrlnum | (OCoLC)1401178181 (DE-599)BVBBV049043749 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02436nam a2200409 c 4500</leader><controlfield tag="001">BV049043749</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230912 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230710s2023 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781668488171</subfield><subfield code="c">paperback</subfield><subfield code="9">978-1-6684-8817-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781668488164</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-1-6684-8816-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781668488171</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1401178181</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049043749</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">AI techniques for renewable source integration and battery charging methods in electric vehicle applications</subfield><subfield code="c">S. Angalaeswari, T. Deepa, L. Ashok Kumar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hershey, PA</subfield><subfield code="b">IGI Global</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xix, 288 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">279 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in civil and industrial engineering (ACIE) book series</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Premier reference source</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Artificial intelligence techniques applied in the power system sector make the prediction of renewable power source generation and demand more efficient and effective. Additionally, since renewable sources are intermittent in nature, it is necessary to predict and analyze the data of input sources. Hence, further study on the prediction and data analysis of renewable energy sources for sustainable development is required.AI Techniques for Renewable Source Integration and Battery Charging Methods in Electric Vehicle Applications focuses on artificial intelligence techniques for the evolving power system field, electric vehicle market, energy storage elements, and renewable energy source integration as distributed generators. Covering key topics such as deep learning, artificial intelligence, and smart solar energy, this premier reference source is ideal for environmentalists, computer scientists, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc / Electrical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc / Alternative & renewable energy sources & technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc / Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Angalaeswari, S.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deepa, T.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, L. Ashok</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">9781-6684-8818-8</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034306237</subfield></datafield></record></collection> |
id | DE-604.BV049043749 |
illustrated | Illustrated |
index_date | 2024-07-03T22:19:46Z |
indexdate | 2024-07-10T09:53:39Z |
institution | BVB |
isbn | 9781668488171 9781668488164 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034306237 |
oclc_num | 1401178181 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xix, 288 Seiten Illustrationen, Diagramme 279 mm |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | IGI Global |
record_format | marc |
series2 | Advances in civil and industrial engineering (ACIE) book series Premier reference source |
spelling | AI techniques for renewable source integration and battery charging methods in electric vehicle applications S. Angalaeswari, T. Deepa, L. Ashok Kumar Hershey, PA IGI Global [2023] xix, 288 Seiten Illustrationen, Diagramme 279 mm txt rdacontent n rdamedia nc rdacarrier Advances in civil and industrial engineering (ACIE) book series Premier reference source Artificial intelligence techniques applied in the power system sector make the prediction of renewable power source generation and demand more efficient and effective. Additionally, since renewable sources are intermittent in nature, it is necessary to predict and analyze the data of input sources. Hence, further study on the prediction and data analysis of renewable energy sources for sustainable development is required.AI Techniques for Renewable Source Integration and Battery Charging Methods in Electric Vehicle Applications focuses on artificial intelligence techniques for the evolving power system field, electric vehicle market, energy storage elements, and renewable energy source integration as distributed generators. Covering key topics such as deep learning, artificial intelligence, and smart solar energy, this premier reference source is ideal for environmentalists, computer scientists, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students bicssc / Electrical engineering bicssc / Alternative & renewable energy sources & technology bicssc / Artificial intelligence bisacsh Angalaeswari, S. edt Deepa, T. edt Kumar, L. Ashok edt Erscheint auch als Online-Ausgabe 9781-6684-8818-8 |
spellingShingle | AI techniques for renewable source integration and battery charging methods in electric vehicle applications bicssc / Electrical engineering bicssc / Alternative & renewable energy sources & technology bicssc / Artificial intelligence bisacsh |
title | AI techniques for renewable source integration and battery charging methods in electric vehicle applications |
title_auth | AI techniques for renewable source integration and battery charging methods in electric vehicle applications |
title_exact_search | AI techniques for renewable source integration and battery charging methods in electric vehicle applications |
title_exact_search_txtP | AI techniques for renewable source integration and battery charging methods in electric vehicle applications |
title_full | AI techniques for renewable source integration and battery charging methods in electric vehicle applications S. Angalaeswari, T. Deepa, L. Ashok Kumar |
title_fullStr | AI techniques for renewable source integration and battery charging methods in electric vehicle applications S. Angalaeswari, T. Deepa, L. Ashok Kumar |
title_full_unstemmed | AI techniques for renewable source integration and battery charging methods in electric vehicle applications S. Angalaeswari, T. Deepa, L. Ashok Kumar |
title_short | AI techniques for renewable source integration and battery charging methods in electric vehicle applications |
title_sort | ai techniques for renewable source integration and battery charging methods in electric vehicle applications |
topic | bicssc / Electrical engineering bicssc / Alternative & renewable energy sources & technology bicssc / Artificial intelligence bisacsh |
topic_facet | bicssc / Electrical engineering bicssc / Alternative & renewable energy sources & technology bicssc / Artificial intelligence bisacsh |
work_keys_str_mv | AT angalaeswaris aitechniquesforrenewablesourceintegrationandbatterychargingmethodsinelectricvehicleapplications AT deepat aitechniquesforrenewablesourceintegrationandbatterychargingmethodsinelectricvehicleapplications AT kumarlashok aitechniquesforrenewablesourceintegrationandbatterychargingmethodsinelectricvehicleapplications |