An Introduction to Smooth Manifolds:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer Nature Singapore
2023
Singapore Springer |
Ausgabe: | 1st ed. 2023 |
Schlagworte: | |
Online-Zugang: | BTU01 FHD01 FHN01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBM01 UBT01 UBW01 UBY01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (XV, 210 p. 31 illus., 10 illus. in color) |
ISBN: | 9789819905652 |
DOI: | 10.1007/978-981-99-0565-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049033539 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230704s2023 |||| o||u| ||||||eng d | ||
020 | |a 9789819905652 |c Online |9 978-981-9905-65-2 | ||
024 | 7 | |a 10.1007/978-981-99-0565-2 |2 doi | |
035 | |a (ZDB-2-SMA)9789819905652 | ||
035 | |a (OCoLC)1389180529 | ||
035 | |a (DE-599)BVBBV049033539 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-188 |a DE-523 |a DE-863 |a DE-1050 |a DE-20 |a DE-862 |a DE-92 |a DE-824 |a DE-703 |a DE-706 |a DE-739 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Majumdar, Manjusha |e Verfasser |4 aut | |
245 | 1 | 0 | |a An Introduction to Smooth Manifolds |c by Manjusha Majumdar, Arindam Bhattacharyya |
250 | |a 1st ed. 2023 | ||
264 | 1 | |a Singapore |b Springer Nature Singapore |c 2023 | |
264 | 1 | |a Singapore |b Springer | |
300 | |a 1 Online-Ressource (XV, 210 p. 31 illus., 10 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Topological Groups and Lie Groups | |
650 | 4 | |a Geometry, Differential | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Topological groups | |
650 | 4 | |a Lie groups | |
700 | 1 | |a Bhattacharyya, Arindam |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-981-9905-64-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-981-9905-66-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-981-9905-67-6 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-981-99-0565-2 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2023 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034296200 | ||
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l FHD01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l FHN01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l UBY01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-99-0565-2 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 1048027 |
---|---|
_version_ | 1806175285403451392 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Majumdar, Manjusha Bhattacharyya, Arindam |
author_facet | Majumdar, Manjusha Bhattacharyya, Arindam |
author_role | aut aut |
author_sort | Majumdar, Manjusha |
author_variant | m m mm a b ab |
building | Verbundindex |
bvnumber | BV049033539 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9789819905652 (OCoLC)1389180529 (DE-599)BVBBV049033539 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-981-99-0565-2 |
edition | 1st ed. 2023 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03302nmm a2200685zc 4500</leader><controlfield tag="001">BV049033539</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230704s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789819905652</subfield><subfield code="c">Online</subfield><subfield code="9">978-981-9905-65-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-981-99-0565-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9789819905652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1389180529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049033539</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Majumdar, Manjusha</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Introduction to Smooth Manifolds</subfield><subfield code="c">by Manjusha Majumdar, Arindam Bhattacharyya</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2023</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer Nature Singapore</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 210 p. 31 illus., 10 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups and Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhattacharyya, Arindam</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-981-9905-64-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-981-9905-66-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-981-9905-67-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2023</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034296200</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-99-0565-2</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049033539 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:17:10Z |
indexdate | 2024-08-01T11:03:00Z |
institution | BVB |
isbn | 9789819905652 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034296200 |
oclc_num | 1389180529 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-703 DE-706 DE-739 DE-634 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-703 DE-706 DE-739 DE-634 |
physical | 1 Online-Ressource (XV, 210 p. 31 illus., 10 illus. in color) |
psigel | ZDB-2-SMA ZDB-2-SMA_2023 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Springer Nature Singapore Springer |
record_format | marc |
spellingShingle | Majumdar, Manjusha Bhattacharyya, Arindam An Introduction to Smooth Manifolds Differential Geometry Global Analysis and Analysis on Manifolds Topological Groups and Lie Groups Geometry, Differential Global analysis (Mathematics) Manifolds (Mathematics) Topological groups Lie groups |
title | An Introduction to Smooth Manifolds |
title_auth | An Introduction to Smooth Manifolds |
title_exact_search | An Introduction to Smooth Manifolds |
title_exact_search_txtP | An Introduction to Smooth Manifolds |
title_full | An Introduction to Smooth Manifolds by Manjusha Majumdar, Arindam Bhattacharyya |
title_fullStr | An Introduction to Smooth Manifolds by Manjusha Majumdar, Arindam Bhattacharyya |
title_full_unstemmed | An Introduction to Smooth Manifolds by Manjusha Majumdar, Arindam Bhattacharyya |
title_short | An Introduction to Smooth Manifolds |
title_sort | an introduction to smooth manifolds |
topic | Differential Geometry Global Analysis and Analysis on Manifolds Topological Groups and Lie Groups Geometry, Differential Global analysis (Mathematics) Manifolds (Mathematics) Topological groups Lie groups |
topic_facet | Differential Geometry Global Analysis and Analysis on Manifolds Topological Groups and Lie Groups Geometry, Differential Global analysis (Mathematics) Manifolds (Mathematics) Topological groups Lie groups |
url | https://doi.org/10.1007/978-981-99-0565-2 |
work_keys_str_mv | AT majumdarmanjusha anintroductiontosmoothmanifolds AT bhattacharyyaarindam anintroductiontosmoothmanifolds |