Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV049028750 | ||
003 | DE-604 | ||
005 | 20230707 | ||
007 | cr|uuu---uuuuu | ||
008 | 230630s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781119986621 |9 978-1-119-98662-1 | ||
035 | |a (OCoLC)1389178029 | ||
035 | |a (DE-599)BVBBV049028750 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 | ||
100 | 1 | |a Zegarelli, Mark |e Verfasser |0 (DE-588)134009460 |4 aut | |
245 | 1 | 0 | |a Calculus II for dummies |c by Mark Zegarelli |
250 | |a 3rd edition | ||
264 | 1 | |a Hoboken, New Jersey |b Wiley |c [2023] | |
300 | |a 1 Online-Ressource (xiii, 375 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Intro -- Title Page -- Copyright Page -- Table of Contents -- Introduction -- About This Book -- Conventions Used in This Book -- What You're Not to Read -- Foolish Assumptions -- Icons Used in This Book -- Beyond the Book -- Where to Go from Here -- Part 1 Introduction to Integration -- Chapter 1 An Aerial View of the Area Problem -- Checking Out the Area -- Comparing classical and analytic geometry -- Finding definite answers with the definite integral -- Slicing Things Up -- Untangling a hairy problem using rectangles -- Moving left, right, or center -- Defining the Indefinite | |
505 | 8 | |a Solving Problems with Integration -- We can work it out: Finding the area between curves -- Walking the long and winding road -- You say you want a revolution -- Differential Equations -- Understanding Infinite Series -- Distinguishing sequences and series -- Evaluating series -- Identifying convergent and divergent series -- Chapter 2 Forgotten but Not Gone: Review of Algebra and Pre-Calculus -- Quick Review of Pre-Algebra and Algebra -- Working with fractions -- Adding fractions -- Subtracting fractions -- Multiplying fractions -- Dividing fractions -- Knowing the facts on factorials | |
505 | 8 | |a Polishing off polynomials -- Powering through powers (exponents) -- Understanding zero and negative exponents -- Understanding fractional exponents -- Expressing functions using exponents -- Rewriting rational functions using exponents -- Simplifying rational expressions by factoring -- Review of Pre-Calculus -- Trigonometry -- Noting trig notation -- Figuring the angles with radians -- Identifying some important trig identities -- Asymptotes -- Graphing common parent functions -- Linear and polynomial functions -- Exponential and logarithmic functions -- Trigonometric functions | |
505 | 8 | |a Transforming continuous functions -- Polar coordinates -- Summing up sigma notation -- Chapter 3 Recent Memories: Review of Calculus I -- Knowing Your Limits -- Telling functions and limits apart -- Evaluating limits -- Hitting the Slopes with Derivatives -- Referring to the limit formula for derivatives -- Knowing two notations for derivatives -- Understanding Differentiation -- Memorizing key derivatives -- Derivatives of the trig functions -- Derivatives of the inverse trig functions -- The Power rule -- The Sum rule -- The Constant Multiple rule -- The Product rule -- The Quotient rule | |
505 | 8 | |a Evaluating functions from the inside out -- Differentiating functions from the outside in -- Finding Limits Using L'Hôpital's Rule -- Introducing L'Hôpital's rule -- Alternative indeterminate forms -- Case #1: 0 ⋅ ∞ -- Case #2: ∞ - ∞ -- Case #3: Indeterminate powers -- Part 2 From Definite to Indefinite Integrals -- Chapter 4 Approximating Area with Riemann Sums -- Three Ways to Approximate Area with Rectangles -- Using left rectangles -- Using right rectangles -- Finding a middle ground: The Midpoint rule -- Two More Ways to Approximate Area -- Feeling trapped? The Trapezoid rule | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-119-98663-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, pbk |z 978-1-119-98661-4 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034291499 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=7211575 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804185311580782592 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Zegarelli, Mark |
author_GND | (DE-588)134009460 |
author_facet | Zegarelli, Mark |
author_role | aut |
author_sort | Zegarelli, Mark |
author_variant | m z mz |
building | Verbundindex |
bvnumber | BV049028750 |
collection | ZDB-30-PQE |
contents | Intro -- Title Page -- Copyright Page -- Table of Contents -- Introduction -- About This Book -- Conventions Used in This Book -- What You're Not to Read -- Foolish Assumptions -- Icons Used in This Book -- Beyond the Book -- Where to Go from Here -- Part 1 Introduction to Integration -- Chapter 1 An Aerial View of the Area Problem -- Checking Out the Area -- Comparing classical and analytic geometry -- Finding definite answers with the definite integral -- Slicing Things Up -- Untangling a hairy problem using rectangles -- Moving left, right, or center -- Defining the Indefinite Solving Problems with Integration -- We can work it out: Finding the area between curves -- Walking the long and winding road -- You say you want a revolution -- Differential Equations -- Understanding Infinite Series -- Distinguishing sequences and series -- Evaluating series -- Identifying convergent and divergent series -- Chapter 2 Forgotten but Not Gone: Review of Algebra and Pre-Calculus -- Quick Review of Pre-Algebra and Algebra -- Working with fractions -- Adding fractions -- Subtracting fractions -- Multiplying fractions -- Dividing fractions -- Knowing the facts on factorials Polishing off polynomials -- Powering through powers (exponents) -- Understanding zero and negative exponents -- Understanding fractional exponents -- Expressing functions using exponents -- Rewriting rational functions using exponents -- Simplifying rational expressions by factoring -- Review of Pre-Calculus -- Trigonometry -- Noting trig notation -- Figuring the angles with radians -- Identifying some important trig identities -- Asymptotes -- Graphing common parent functions -- Linear and polynomial functions -- Exponential and logarithmic functions -- Trigonometric functions Transforming continuous functions -- Polar coordinates -- Summing up sigma notation -- Chapter 3 Recent Memories: Review of Calculus I -- Knowing Your Limits -- Telling functions and limits apart -- Evaluating limits -- Hitting the Slopes with Derivatives -- Referring to the limit formula for derivatives -- Knowing two notations for derivatives -- Understanding Differentiation -- Memorizing key derivatives -- Derivatives of the trig functions -- Derivatives of the inverse trig functions -- The Power rule -- The Sum rule -- The Constant Multiple rule -- The Product rule -- The Quotient rule Evaluating functions from the inside out -- Differentiating functions from the outside in -- Finding Limits Using L'Hôpital's Rule -- Introducing L'Hôpital's rule -- Alternative indeterminate forms -- Case #1: 0 ⋅ ∞ -- Case #2: ∞ - ∞ -- Case #3: Indeterminate powers -- Part 2 From Definite to Indefinite Integrals -- Chapter 4 Approximating Area with Riemann Sums -- Three Ways to Approximate Area with Rectangles -- Using left rectangles -- Using right rectangles -- Finding a middle ground: The Midpoint rule -- Two More Ways to Approximate Area -- Feeling trapped? The Trapezoid rule |
ctrlnum | (OCoLC)1389178029 (DE-599)BVBBV049028750 |
edition | 3rd edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04145nmm a2200373 c 4500</leader><controlfield tag="001">BV049028750</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230707 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230630s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119986621</subfield><subfield code="9">978-1-119-98662-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1389178029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049028750</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zegarelli, Mark</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134009460</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculus II for dummies</subfield><subfield code="c">by Mark Zegarelli</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, New Jersey</subfield><subfield code="b">Wiley</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 375 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Title Page -- Copyright Page -- Table of Contents -- Introduction -- About This Book -- Conventions Used in This Book -- What You're Not to Read -- Foolish Assumptions -- Icons Used in This Book -- Beyond the Book -- Where to Go from Here -- Part 1 Introduction to Integration -- Chapter 1 An Aerial View of the Area Problem -- Checking Out the Area -- Comparing classical and analytic geometry -- Finding definite answers with the definite integral -- Slicing Things Up -- Untangling a hairy problem using rectangles -- Moving left, right, or center -- Defining the Indefinite</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Solving Problems with Integration -- We can work it out: Finding the area between curves -- Walking the long and winding road -- You say you want a revolution -- Differential Equations -- Understanding Infinite Series -- Distinguishing sequences and series -- Evaluating series -- Identifying convergent and divergent series -- Chapter 2 Forgotten but Not Gone: Review of Algebra and Pre-Calculus -- Quick Review of Pre-Algebra and Algebra -- Working with fractions -- Adding fractions -- Subtracting fractions -- Multiplying fractions -- Dividing fractions -- Knowing the facts on factorials</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Polishing off polynomials -- Powering through powers (exponents) -- Understanding zero and negative exponents -- Understanding fractional exponents -- Expressing functions using exponents -- Rewriting rational functions using exponents -- Simplifying rational expressions by factoring -- Review of Pre-Calculus -- Trigonometry -- Noting trig notation -- Figuring the angles with radians -- Identifying some important trig identities -- Asymptotes -- Graphing common parent functions -- Linear and polynomial functions -- Exponential and logarithmic functions -- Trigonometric functions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Transforming continuous functions -- Polar coordinates -- Summing up sigma notation -- Chapter 3 Recent Memories: Review of Calculus I -- Knowing Your Limits -- Telling functions and limits apart -- Evaluating limits -- Hitting the Slopes with Derivatives -- Referring to the limit formula for derivatives -- Knowing two notations for derivatives -- Understanding Differentiation -- Memorizing key derivatives -- Derivatives of the trig functions -- Derivatives of the inverse trig functions -- The Power rule -- The Sum rule -- The Constant Multiple rule -- The Product rule -- The Quotient rule</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Evaluating functions from the inside out -- Differentiating functions from the outside in -- Finding Limits Using L'Hôpital's Rule -- Introducing L'Hôpital's rule -- Alternative indeterminate forms -- Case #1: 0 ⋅ ∞ -- Case #2: ∞ - ∞ -- Case #3: Indeterminate powers -- Part 2 From Definite to Indefinite Integrals -- Chapter 4 Approximating Area with Riemann Sums -- Three Ways to Approximate Area with Rectangles -- Using left rectangles -- Using right rectangles -- Finding a middle ground: The Midpoint rule -- Two More Ways to Approximate Area -- Feeling trapped? The Trapezoid rule</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-119-98663-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, pbk</subfield><subfield code="z">978-1-119-98661-4</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034291499</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=7211575</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049028750 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:16:04Z |
indexdate | 2024-07-10T09:53:13Z |
institution | BVB |
isbn | 9781119986621 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034291499 |
oclc_num | 1389178029 |
open_access_boolean | |
owner | DE-1050 |
owner_facet | DE-1050 |
physical | 1 Online-Ressource (xiii, 375 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Wiley |
record_format | marc |
spelling | Zegarelli, Mark Verfasser (DE-588)134009460 aut Calculus II for dummies by Mark Zegarelli 3rd edition Hoboken, New Jersey Wiley [2023] 1 Online-Ressource (xiii, 375 Seiten) txt rdacontent c rdamedia cr rdacarrier Intro -- Title Page -- Copyright Page -- Table of Contents -- Introduction -- About This Book -- Conventions Used in This Book -- What You're Not to Read -- Foolish Assumptions -- Icons Used in This Book -- Beyond the Book -- Where to Go from Here -- Part 1 Introduction to Integration -- Chapter 1 An Aerial View of the Area Problem -- Checking Out the Area -- Comparing classical and analytic geometry -- Finding definite answers with the definite integral -- Slicing Things Up -- Untangling a hairy problem using rectangles -- Moving left, right, or center -- Defining the Indefinite Solving Problems with Integration -- We can work it out: Finding the area between curves -- Walking the long and winding road -- You say you want a revolution -- Differential Equations -- Understanding Infinite Series -- Distinguishing sequences and series -- Evaluating series -- Identifying convergent and divergent series -- Chapter 2 Forgotten but Not Gone: Review of Algebra and Pre-Calculus -- Quick Review of Pre-Algebra and Algebra -- Working with fractions -- Adding fractions -- Subtracting fractions -- Multiplying fractions -- Dividing fractions -- Knowing the facts on factorials Polishing off polynomials -- Powering through powers (exponents) -- Understanding zero and negative exponents -- Understanding fractional exponents -- Expressing functions using exponents -- Rewriting rational functions using exponents -- Simplifying rational expressions by factoring -- Review of Pre-Calculus -- Trigonometry -- Noting trig notation -- Figuring the angles with radians -- Identifying some important trig identities -- Asymptotes -- Graphing common parent functions -- Linear and polynomial functions -- Exponential and logarithmic functions -- Trigonometric functions Transforming continuous functions -- Polar coordinates -- Summing up sigma notation -- Chapter 3 Recent Memories: Review of Calculus I -- Knowing Your Limits -- Telling functions and limits apart -- Evaluating limits -- Hitting the Slopes with Derivatives -- Referring to the limit formula for derivatives -- Knowing two notations for derivatives -- Understanding Differentiation -- Memorizing key derivatives -- Derivatives of the trig functions -- Derivatives of the inverse trig functions -- The Power rule -- The Sum rule -- The Constant Multiple rule -- The Product rule -- The Quotient rule Evaluating functions from the inside out -- Differentiating functions from the outside in -- Finding Limits Using L'Hôpital's Rule -- Introducing L'Hôpital's rule -- Alternative indeterminate forms -- Case #1: 0 ⋅ ∞ -- Case #2: ∞ - ∞ -- Case #3: Indeterminate powers -- Part 2 From Definite to Indefinite Integrals -- Chapter 4 Approximating Area with Riemann Sums -- Three Ways to Approximate Area with Rectangles -- Using left rectangles -- Using right rectangles -- Finding a middle ground: The Midpoint rule -- Two More Ways to Approximate Area -- Feeling trapped? The Trapezoid rule Erscheint auch als Online-Ausgabe 978-1-119-98663-8 Erscheint auch als Druck-Ausgabe, pbk 978-1-119-98661-4 |
spellingShingle | Zegarelli, Mark Calculus II for dummies Intro -- Title Page -- Copyright Page -- Table of Contents -- Introduction -- About This Book -- Conventions Used in This Book -- What You're Not to Read -- Foolish Assumptions -- Icons Used in This Book -- Beyond the Book -- Where to Go from Here -- Part 1 Introduction to Integration -- Chapter 1 An Aerial View of the Area Problem -- Checking Out the Area -- Comparing classical and analytic geometry -- Finding definite answers with the definite integral -- Slicing Things Up -- Untangling a hairy problem using rectangles -- Moving left, right, or center -- Defining the Indefinite Solving Problems with Integration -- We can work it out: Finding the area between curves -- Walking the long and winding road -- You say you want a revolution -- Differential Equations -- Understanding Infinite Series -- Distinguishing sequences and series -- Evaluating series -- Identifying convergent and divergent series -- Chapter 2 Forgotten but Not Gone: Review of Algebra and Pre-Calculus -- Quick Review of Pre-Algebra and Algebra -- Working with fractions -- Adding fractions -- Subtracting fractions -- Multiplying fractions -- Dividing fractions -- Knowing the facts on factorials Polishing off polynomials -- Powering through powers (exponents) -- Understanding zero and negative exponents -- Understanding fractional exponents -- Expressing functions using exponents -- Rewriting rational functions using exponents -- Simplifying rational expressions by factoring -- Review of Pre-Calculus -- Trigonometry -- Noting trig notation -- Figuring the angles with radians -- Identifying some important trig identities -- Asymptotes -- Graphing common parent functions -- Linear and polynomial functions -- Exponential and logarithmic functions -- Trigonometric functions Transforming continuous functions -- Polar coordinates -- Summing up sigma notation -- Chapter 3 Recent Memories: Review of Calculus I -- Knowing Your Limits -- Telling functions and limits apart -- Evaluating limits -- Hitting the Slopes with Derivatives -- Referring to the limit formula for derivatives -- Knowing two notations for derivatives -- Understanding Differentiation -- Memorizing key derivatives -- Derivatives of the trig functions -- Derivatives of the inverse trig functions -- The Power rule -- The Sum rule -- The Constant Multiple rule -- The Product rule -- The Quotient rule Evaluating functions from the inside out -- Differentiating functions from the outside in -- Finding Limits Using L'Hôpital's Rule -- Introducing L'Hôpital's rule -- Alternative indeterminate forms -- Case #1: 0 ⋅ ∞ -- Case #2: ∞ - ∞ -- Case #3: Indeterminate powers -- Part 2 From Definite to Indefinite Integrals -- Chapter 4 Approximating Area with Riemann Sums -- Three Ways to Approximate Area with Rectangles -- Using left rectangles -- Using right rectangles -- Finding a middle ground: The Midpoint rule -- Two More Ways to Approximate Area -- Feeling trapped? The Trapezoid rule |
title | Calculus II for dummies |
title_auth | Calculus II for dummies |
title_exact_search | Calculus II for dummies |
title_exact_search_txtP | Calculus II for dummies |
title_full | Calculus II for dummies by Mark Zegarelli |
title_fullStr | Calculus II for dummies by Mark Zegarelli |
title_full_unstemmed | Calculus II for dummies by Mark Zegarelli |
title_short | Calculus II for dummies |
title_sort | calculus ii for dummies |
work_keys_str_mv | AT zegarellimark calculusiifordummies |