Heat kernel on Lie groups and maximally symmetric spaces:
This monograph studies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces. It introduces many original ideas, methods, and tools developed by the author and provides a list of all known exact results in explicit form – and derives them – for the heat kernel o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Birkhäuser
[2023]
|
Schriftenreihe: | Frontiers in mathematics
|
Schlagworte: | |
Zusammenfassung: | This monograph studies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces. It introduces many original ideas, methods, and tools developed by the author and provides a list of all known exact results in explicit form – and derives them – for the heat kernel on spheres and hyperbolic spaces. Part I considers the geometry of simple Lie groups and maximally symmetric spaces in detail, and Part II discusses the calculation of the heat kernel for scalar, spinor, and generic Laplacians on spheres and hyperbolic spaces in various dimensions. This text will be a valuable resource for researchers and graduate students working in various areas of mathematics – such as global analysis, spectral geometry, stochastic processes, and financial mathematics – as well in areas of mathematical and theoretical physics – including quantum field theory, quantum gravity, string theory, and statistical physics |
Beschreibung: | Part I. ManifoldsChapter. 1. IntroductionChapter. 2. Geometry of Simple GroupsChapter. 3. Geometry of SU(2)Chapter. 4. Maximally Symmetric SpacesChapter. 5. Three-dimensional Maximally Symmetric SpacesPart II: Heat KernelChapter. 6. Scalar Heat KernelChapter. 7. Spinor Heat KernelChapter. 8. Heat Kernel in Two DimensionsChapter. 9. Heat Kernel on S3 and H3Chapter. 10. Algebraic Method for the Heat KernelAppendix AReferencesIndex |
Beschreibung: | xix, 190 Seiten 367 grams |
ISBN: | 9783031274503 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049027908 | ||
003 | DE-604 | ||
005 | 20230810 | ||
007 | t | ||
008 | 230629s2023 |||| 00||| eng d | ||
020 | |a 9783031274503 |9 978-3-031-27450-3 | ||
024 | 3 | |a 9783031274503 | |
035 | |a (OCoLC)1396269231 | ||
035 | |a (DE-599)BVBBV049027908 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Avramidi, Ivan G. |d 1957- |e Verfasser |0 (DE-588)121751031 |4 aut | |
245 | 1 | 0 | |a Heat kernel on Lie groups and maximally symmetric spaces |c Ivan G. Avramidi |
264 | 1 | |a Cham, Switzerland |b Birkhäuser |c [2023] | |
300 | |a xix, 190 Seiten |c 367 grams | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Frontiers in mathematics | |
500 | |a Part I. ManifoldsChapter. 1. IntroductionChapter. 2. Geometry of Simple GroupsChapter. 3. Geometry of SU(2)Chapter. 4. Maximally Symmetric SpacesChapter. 5. Three-dimensional Maximally Symmetric SpacesPart II: Heat KernelChapter. 6. Scalar Heat KernelChapter. 7. Spinor Heat KernelChapter. 8. Heat Kernel in Two DimensionsChapter. 9. Heat Kernel on S3 and H3Chapter. 10. Algebraic Method for the Heat KernelAppendix AReferencesIndex | ||
520 | |a This monograph studies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces. It introduces many original ideas, methods, and tools developed by the author and provides a list of all known exact results in explicit form – and derives them – for the heat kernel on spheres and hyperbolic spaces. Part I considers the geometry of simple Lie groups and maximally symmetric spaces in detail, and Part II discusses the calculation of the heat kernel for scalar, spinor, and generic Laplacians on spheres and hyperbolic spaces in various dimensions. This text will be a valuable resource for researchers and graduate students working in various areas of mathematics – such as global analysis, spectral geometry, stochastic processes, and financial mathematics – as well in areas of mathematical and theoretical physics – including quantum field theory, quantum gravity, string theory, and statistical physics | ||
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Global analysis (Mathematics) | |
653 | |a Hardcover, Softcover / Mathematik/Analysis | ||
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-031-27451-0 |
999 | |a oai:aleph.bib-bvb.de:BVB01-034290669 |
Datensatz im Suchindex
_version_ | 1804185309984849920 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Avramidi, Ivan G. 1957- |
author_GND | (DE-588)121751031 |
author_facet | Avramidi, Ivan G. 1957- |
author_role | aut |
author_sort | Avramidi, Ivan G. 1957- |
author_variant | i g a ig iga |
building | Verbundindex |
bvnumber | BV049027908 |
ctrlnum | (OCoLC)1396269231 (DE-599)BVBBV049027908 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02720nam a2200457 c 4500</leader><controlfield tag="001">BV049027908</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230810 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230629s2023 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031274503</subfield><subfield code="9">978-3-031-27450-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783031274503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1396269231</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049027908</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Avramidi, Ivan G.</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121751031</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heat kernel on Lie groups and maximally symmetric spaces</subfield><subfield code="c">Ivan G. Avramidi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xix, 190 Seiten</subfield><subfield code="c">367 grams</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Frontiers in mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Part I. ManifoldsChapter. 1. IntroductionChapter. 2. Geometry of Simple GroupsChapter. 3. Geometry of SU(2)Chapter. 4. Maximally Symmetric SpacesChapter. 5. Three-dimensional Maximally Symmetric SpacesPart II: Heat KernelChapter. 6. Scalar Heat KernelChapter. 7. Spinor Heat KernelChapter. 8. Heat Kernel in Two DimensionsChapter. 9. Heat Kernel on S3 and H3Chapter. 10. Algebraic Method for the Heat KernelAppendix AReferencesIndex</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph studies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces. It introduces many original ideas, methods, and tools developed by the author and provides a list of all known exact results in explicit form – and derives them – for the heat kernel on spheres and hyperbolic spaces. Part I considers the geometry of simple Lie groups and maximally symmetric spaces in detail, and Part II discusses the calculation of the heat kernel for scalar, spinor, and generic Laplacians on spheres and hyperbolic spaces in various dimensions. This text will be a valuable resource for researchers and graduate students working in various areas of mathematics – such as global analysis, spectral geometry, stochastic processes, and financial mathematics – as well in areas of mathematical and theoretical physics – including quantum field theory, quantum gravity, string theory, and statistical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Mathematik/Analysis</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-031-27451-0</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034290669</subfield></datafield></record></collection> |
id | DE-604.BV049027908 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:15:40Z |
indexdate | 2024-07-10T09:53:12Z |
institution | BVB |
isbn | 9783031274503 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034290669 |
oclc_num | 1396269231 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xix, 190 Seiten 367 grams |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Birkhäuser |
record_format | marc |
series2 | Frontiers in mathematics |
spelling | Avramidi, Ivan G. 1957- Verfasser (DE-588)121751031 aut Heat kernel on Lie groups and maximally symmetric spaces Ivan G. Avramidi Cham, Switzerland Birkhäuser [2023] xix, 190 Seiten 367 grams txt rdacontent n rdamedia nc rdacarrier Frontiers in mathematics Part I. ManifoldsChapter. 1. IntroductionChapter. 2. Geometry of Simple GroupsChapter. 3. Geometry of SU(2)Chapter. 4. Maximally Symmetric SpacesChapter. 5. Three-dimensional Maximally Symmetric SpacesPart II: Heat KernelChapter. 6. Scalar Heat KernelChapter. 7. Spinor Heat KernelChapter. 8. Heat Kernel in Two DimensionsChapter. 9. Heat Kernel on S3 and H3Chapter. 10. Algebraic Method for the Heat KernelAppendix AReferencesIndex This monograph studies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces. It introduces many original ideas, methods, and tools developed by the author and provides a list of all known exact results in explicit form – and derives them – for the heat kernel on spheres and hyperbolic spaces. Part I considers the geometry of simple Lie groups and maximally symmetric spaces in detail, and Part II discusses the calculation of the heat kernel for scalar, spinor, and generic Laplacians on spheres and hyperbolic spaces in various dimensions. This text will be a valuable resource for researchers and graduate students working in various areas of mathematics – such as global analysis, spectral geometry, stochastic processes, and financial mathematics – as well in areas of mathematical and theoretical physics – including quantum field theory, quantum gravity, string theory, and statistical physics bicssc bisacsh Manifolds (Mathematics) Differential equations Mathematical physics Group theory Global analysis (Mathematics) Hardcover, Softcover / Mathematik/Analysis Erscheint auch als Online-Ausgabe 978-3-031-27451-0 |
spellingShingle | Avramidi, Ivan G. 1957- Heat kernel on Lie groups and maximally symmetric spaces bicssc bisacsh Manifolds (Mathematics) Differential equations Mathematical physics Group theory Global analysis (Mathematics) |
title | Heat kernel on Lie groups and maximally symmetric spaces |
title_auth | Heat kernel on Lie groups and maximally symmetric spaces |
title_exact_search | Heat kernel on Lie groups and maximally symmetric spaces |
title_exact_search_txtP | Heat kernel on Lie groups and maximally symmetric spaces |
title_full | Heat kernel on Lie groups and maximally symmetric spaces Ivan G. Avramidi |
title_fullStr | Heat kernel on Lie groups and maximally symmetric spaces Ivan G. Avramidi |
title_full_unstemmed | Heat kernel on Lie groups and maximally symmetric spaces Ivan G. Avramidi |
title_short | Heat kernel on Lie groups and maximally symmetric spaces |
title_sort | heat kernel on lie groups and maximally symmetric spaces |
topic | bicssc bisacsh Manifolds (Mathematics) Differential equations Mathematical physics Group theory Global analysis (Mathematics) |
topic_facet | bicssc bisacsh Manifolds (Mathematics) Differential equations Mathematical physics Group theory Global analysis (Mathematics) |
work_keys_str_mv | AT avramidiivang heatkernelonliegroupsandmaximallysymmetricspaces |