Magnetic flux leakage testing technology for welding seam of storage and transportation equipment:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Clausthal-Zellerfeld
Papierflieger
2022
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 542 Seiten 21 cm x 15 cm, 715 g |
ISBN: | 9783869488806 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV049022408 | ||
003 | DE-604 | ||
005 | 20231218 | ||
007 | t | ||
008 | 230627s2022 gw |||| 00||| eng d | ||
015 | |a 22,N42 |2 dnb | ||
016 | 7 | |a 1270186930 |2 DE-101 | |
020 | |a 9783869488806 |9 978-3-86948-880-6 | ||
035 | |a (OCoLC)1360423268 | ||
035 | |a (DE-599)DNB1270186930 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-NI | ||
049 | |a DE-83 | ||
084 | |a ZM 3700 |0 (DE-625)157028: |2 rvk | ||
084 | |8 1\p |a 620 |2 23sdnb | ||
100 | 1 | |a Cui, Wei |4 aut | |
245 | 1 | 0 | |a Magnetic flux leakage testing technology for welding seam of storage and transportation equipment |c Wei Cui |
264 | 1 | |a Clausthal-Zellerfeld |b Papierflieger |c 2022 | |
300 | |a XI, 542 Seiten |c 21 cm x 15 cm, 715 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Schweißnahtprüfung |0 (DE-588)4180466-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Magnetische Werkstoffprüfung |0 (DE-588)4168568-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Leck |0 (DE-588)4167086-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tank |0 (DE-588)4125647-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildverarbeitung |0 (DE-588)4006684-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pipeline |0 (DE-588)4125984-1 |2 gnd |9 rswk-swf |
653 | |a Testing Technology | ||
653 | |a Magnetic | ||
653 | |a Flux Leakage | ||
689 | 0 | 0 | |a Tank |0 (DE-588)4125647-5 |D s |
689 | 0 | 1 | |a Pipeline |0 (DE-588)4125984-1 |D s |
689 | 0 | 2 | |a Leck |0 (DE-588)4167086-3 |D s |
689 | 0 | 3 | |a Magnetische Werkstoffprüfung |0 (DE-588)4168568-4 |D s |
689 | 0 | 4 | |a Schweißnahtprüfung |0 (DE-588)4180466-1 |D s |
689 | 0 | 5 | |a Bildverarbeitung |0 (DE-588)4006684-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034285280&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-034285280 | ||
883 | 1 | |8 1\p |a vlb |d 20221013 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1804185300799324160 |
---|---|
adam_text | CONTENTS
PREFACE
ACKNOWLEDGEMENTS
ABOUT
THE
AUTHOR
PART
I.
MAGNETIC
FLUX
LEAKAGE
TESTING
TECHNOLOGY
FOR
WELDING
SEAM
OF
STORAGE
AND
TRANSPORTATION
EQUIPMENT:
A
REVIEW
......................................
1
1.1
INTRODUCTION
.......................................................................................
1
1.2
COMMON
NONDESTRUCTIVE
TESTING
METHODS
FOR
WELDS
.....................
4
1.3
RESEARCH
STATUS
OF
MAGNETIC
FLUX
LEAKAGE
DETECTION
METHODS
AT
HOME
AND
ABROAD
...................................................................................
17
1.3.1
DEVELOPMENT
AND
RESEARCH
STATUS
OF
MAGNETIC
FLUX
LEAKAGE
DETECTION
THEORY
AT
HOME
AND
ABROAD
..........................................
19
1.3.2
DEVELOPMENT
AND
APPLICATION
OF
MAGNETIC
FLUX
LEAKAGE
TESTING
INSTRUMENTS
AT
HOME
AND
ABROAD
.....................................24
1.3.3
RESEARCH
STATUS
OF
MFL
SIGNAL
RECOGNITION
TECHNOLOGY
..27
1.4
RESEARCH
STATUS
OF
IMAGE
RECOGNITION
TECHNOLOGY
AT
HOME
AND
ABROAD
AND
ITS
APPLICATION
IN
THE
FIELD
OF
NONDESTRUCTIVE
TESTING
.....
30
1.4.1
DEVELOPMENT
AND
APPLICATION
OF
IMAGE
RECOGNITION
TECHNOLOGY
....................................................................................
31
1.4.2
IMAGE
TEXTURE
FEATURE
EXTRACTION
METHOD
.........................
34
1.4.3
RESEARCH
STATUS
OF
MATHEMATICAL
MORPHOLOGY
................
37
1.5
RESEARCH
STATUS
OF
DYNAMIC
CRACK
PROPAGATION
ANALYSIS
AT
HOME
AND
ABROAD
.............................................................................................
40
1.6
SUMMARY
.........................................................................................
51
1.7
REFERENCES
.......................................................................................
54
PART
II.
LEAKAGE
MAGNETIC
FIELD
ANALYSIS
OF
STATIC
CRACK
IN
BOTTOM
PLATE
WELD
OF
STORAGE
TANK
.........................................................................
80
2.1
INTRODUCTION
....................................................................................
80
2.2
MAGNETIC
FLUX
LEAKAGE
DETECTION
PRINCIPLE
OF
WELDING
SEAM
ON
TANK
BOTTOM
PLATE
..................................................................................
81
2.3
THEORETICAL
CALCULATION
METHOD
OF
LEAKAGE
MAGNETIC
FIELD
........
83
2.3.1
MAGNETIC
DIPOLE
MODEL
......................................................
84
2.3.2
BASIC
THEORY
OF
ELECTROMAGNETIC
FIELD
...............................
86
2.3.3
APPLICATION
OF
FEM
IN
MAGNETIC
LEAKAGE
FIELD
ANALYSIS
.87
2.4
INFLUENCING
FACTORS
OF
MAGNETIC
LEAKAGE
......................................
90
IV
2.5
FEM
MODEL
OF
LEAKAGE
MAGNETIC
FIELD
OF
WELD
CRACK
ON
BOTTOM
PLATE
OF
STORAGE
TANK
............................................................................
91
2.5.1
ESTABLISHMENT
OF
3D
NUMERICAL
MODEL
.............................
91
2.5.2
MODEL
GRID
DIVISION
...........................................................
94
2.5.3
BOUNDARY
CONDITIONS
AND
SOLUTION
RESULTS
OF
THE
MODEL
..99
2.6
ANALYSIS
OF
MAGNETIC
FIELD
LEAKAGE
RESULTS
OF
WELD
CRACKS
ON
BOTTOM
PLATE
OF
STORAGE
TANK
...............................................................
100
2.7
INFLUENCE
ANALYSIS
OF
WELD-RELATED
STRUCTURES
............................
105
2.7.1
INFLUENCE
ANALYSIS
OF
WELD
SHAPE
DIMENSION
..................
105
2.7.2
COMPARATIVE
ANALYSIS
BETWEEN
SINGLE-SIDE
WELDING
AND
DOUBLE-SIDE
WELDING
WITHOUT
DEFECTS
.......................................
107
2.7.3
IMPACT
ANALYSIS
OF
BACKING
PLATE
....................................
110
2.8
IMPACT
ANALYSIS
OF
DEFECT
CHARACTERISTICS
....................................
116
2.8.1
WELD
CRACKS
OF
DIFFERENT
DEPTHS
......................................
116
2.8.2
WELD
CRACKS
OF
DIFFERENT
WIDTHS
.....................................
126
2.8.3
WELD
CRACKS
OF
DIFFERENT
LENGTHS
....................................
127
2.8.4
IMPACT
ANALYSIS
WHEN
TWO
RECTANGULAR
GROOVE
DEFECTS
EXIST
SIMULTANEOUSLY
...........................................................................
129
2.9
SUMMARY
.......................................................................................
133
PART
III.
DEVELOPMENT
AND
EXPERIMENTAL
STUDY
OF
NON-CONTACT
MAGNETIC
FLUX
LEAKAGE
TESTING
SYSTEM
FOR
WELDING
SEAM
OF
TANK
BOTTOM
PLATE
...............................................................................................
136
3.1
INTRODUCTION
...................................................................................
136
3.2
OVERALL
DESIGN
SCHEME
.................................................................
136
3.3
BASIC
TYPES
OF
MAGNETIC
CIRCUITS
.................................................
137
3.4
STRUCTURAL
DESIGN
OF
DETECTION
SYSTEM
........................................
139
3.5
WELD
CRACK
DEFECTS
.......................................................................
142
3.6
DETERMINE
THE
EXPERIMENTAL
SCHEME
AND
MAKE
THE
DEFECTS
OF
THE
EXPERIMENTAL
BOARD
...........................................................................
143
3.6.1
DETERMINATION
OF
EXPERIMENTAL
SCHEME
.........................
143
3.6.2
PREPARATION
OF
EXPERIMENTAL
BOARDS
AND
DEFECTS
...........
145
3.7
CURVE
DISPLAY
AND
RECOGNITION
OF
MFL
DATA
OF
WELD
DEFECTS...
147
3.7.1
COLLECTION
OF
MAGNETIC
FLUX
LEAKAGE
DATA
OF
WELD
DEFECTS
AND
CURVE
DISPLAY
......................................................................
147
3.7.2
ANALYSIS
AND
IDENTIFICATION
OF
MAGNETIC
FLUX
LEAKAGE
CURVE
OF
WELD
DEFECTS
..........................................................................
150
3.8
COMPARATIVE
ANALYSIS
OF
EXPERIMENTAL
DATA
AND
FINITE
ELEMENT
V
DATA
......................................................................................................
155
3.9
SUMMARY
......................................................................................
158
PART
IV.
VISUAL
IMAGE
DISPLAY
OF
MAGNETIC
FLUX
LEAKAGE
DETECTION
DATA
FOR
WELD
DEFECTS
IN
TANK
PLATE
..........................................................
160
4.1
INTRODUCTION
...................................................................................
160
4.2
IMAGE
EXPRESSION
OF
MFL
DATA
OF
WELD
DEFECTS
AND
CHARACTERISTICS
OF
MFL
IMAGE
161
4.2.1
IMAGE
DISPLAY
OF
MAGNETIC
FLUX
LEAKAGE
DATA
OF
WELD
DEFECTS
........................................................................................
161
4.2.2
CHARACTERISTICS
OF
MAGNETIC
FLUX
LEAKAGE
IMAGE
OF
WELD
DEFECTS
........................................................................................
162
4.3
PSEUDO-COLOR
IMAGE
DISPLAY
OF
MFL
IMAGES
OF
WELD
DEFECTS
..
165
4.3.1
PSEUDO-COLOR
PRINCIPLE
....................................................
165
4.3.2
COLOR
MODEL
FOR
PSEUDO-COLOR
PROCESSING
OF
MFL
IMAGE
OF
WELD
DEFECT
-
RGB
COLOR
MODEL
..........................................
166
4.3.3
PSEUDO-COLOR
PROCESSING
METHOD
AND
RESULT
DISPLAY
OF
MAGNETIC
FLUX
LEAKAGE
IMAGE
OF
WELD
DEFECTS
..........................
167
4.4
STATISTICAL
CHARACTERISTICS
OF
MFL
IMAGES
OF
WELD
DEFECTS
......
169
4.5
SUMMARY
.......................................................................................
173
PART
V.
CLUSTER
ANALYSIS
OF
MFL
IMAGES
OF
WELD
DEFECTS
IN
TANK
PLATE
BASED
ON
GRAY-GRADIENT
CO-OCCURRENCE
MATRIX
175
5.1
INTRODUCTION
...................................................................................
175
5.2
GRAY-GRADIENT
CO-OCCURRENCE
MATRIX
...........................................
175
5.2.1
NORMALIZATION
OF
GRAY
SCALE
AND
GRADIENT
.......................
176
5.2.2
CALCULATION
OF
GRAY-GRADIENT
CO-OCCURRENCE
MATRIX
.....
178
5.2.3
IMAGE
FEATURE
CALCULATION
OF
GRAY-GRADIENT
CO-OCCURRENCE
MATRIX
...........................................................................................
178
5.3
THE
SELECTION
ALGORITHM
OF
GRAY-GRADIENT
CO-OCCURRENCE
MATRIX
FEATURE
CLUSTERING
ANALYSIS
FOR
MFL
IMAGES
OF
WELD
DEFECTS
181
5.3.1
CONDENSED
HIERARCHICAL
ALGORITHM
..................................
181
5.3.2 K-MEANS
ALGORITHM
............................................................
183
5.4
EXAMPLE
ANALYSIS
1
......................................................................
184
5.4.1
EXTRACTION
OF
GRAY-GRADIENT
CO-OCCURRENCE
MATRIX
FEATURE
QUANTITIES
OF
WELDS
AND
DEFECTS
.................................................
184
5.4.2
FEATURE
SELECTION
OF
WELD
AND
DEFECT
BASED
ON
HIERARCHICAL
CLUSTERING
.....................................................................................
185
5.4.3
K-MEANS
CLUSTERING
ANALYSIS
AND
RESULT
DISPLAY
OF
WELDS
VI
AND
DEFECTS
..................................................................................
187
5.5
EXAMPLE
ANALYSIS
2
......................................................................
190
5.5.1
EXTRACTION
OF
GRAY-GRADIENT
CO-OCCURRENCE
MATRIX
FEATURE
QUANTITIES
OF
WELD
DEFECTS
AND
HEAT-AFFECTED
ZONE
DEFECTS
....
190
5.5.2
FEATURE
SELECTION
OF
WELD
DEFECTS
AND
HEAT-AFFECTED
ZONE
DEFECTS
BASED
ON
HIERARCHICAL
CLUSTERING
..................................
191
5.5.3
K-MEANS
CLUSTERING
ANALYSIS
AND
RESULT
DISPLAY
OF
WELD
PATH
DEFECTS
AND
HEAT-AFFECTED
ZONE
DEFECTS
192
5.6
SUMMARY
.......................................................................................
195
PART
VI.
EXTRACTION
METHOD
AND
PRINCIPLE
OF
WELD
CRACK
OF
STORAGE
AND
TRANSPORTATION
EQUIPMENT
IN
MAGNETIC
FLUX
LEAKAGE
DETECTION
IMAGE
197
6.1
INTRODUCTION
197
6.2
CLASSICAL
EDGE
DETECTION
OPERATOR
...............................................
197
6.2.1
SOBEL
EDGE
DETECTION
OPERATOR
.........................................
198
6.2.2
ROBERTS
EDGE
DETECTION
OPERATOR
......................................
199
6.2.3
LAPLACIAN
EDGE
DETECTION
OPERATOR
..................................
199
6.2.4
CANNY
EDGE
DETECTION
OPERATOR
........................................200
6.2.5
MAGNETIC
FLUX
LEAKAGE
IMAGE
DETECTION
RESULTS
AND
ANALYSIS
OF
WELD
CRACKS
200
6.3
BASIC
THEORY
OF
MATHEMATICAL
MORPHOLOGY
AND
SELECTION
OF
STRUCTURAL
ELEMENTS
OF
MFL
IMAGE
OF
WELD
CRACK
...........................202
6.3.1
BINARY
MORPHOLOGY
..........................................................
202
6.3.2
GRAY
SCALE
MORPHOLOGY
...................................................
204
6.3.3
PRINCIPLE
OF
EDGE
DETECTION
IN
MORPHOLOGY
....................
205
6.3.4
SELECTION
OF
STRUCTURAL
ELEMENTS
IN
MFL
IMAGE
OF
WELD
CRACK
206
6.4
MORPHOLOGICAL
ALGORITHM
PRINCIPLE
OF
MAGNETIC
FLUX
LEAKAGE
IMAGE
OF
WELD
CRACK
...........................................................................208
6.4.1
HISTOGRAM
BALANCING
........................................................208
6.4.2
OTSU
BINARIZATION
...........................................................209
6.4.3
MATHEMATICAL
MORPHOLOGY
TO
REMOVE
SMALL
OBJECTS
.....
211
6.4.4
EDGE
DETECTION
.................................................................212
6.5
SUMMARY
......................................................................................212
PART
VIL
INTELLIGENT
EVALUATION
ALGORITHM
FOR
THE
STRUCTURAL
INTEGRITY
TESTING
OF
DYNAMIC
CRACK
OF
PIPE
WELDS
................................................
214
7.1
INTRODUCTION
..................................................................................
215
7.2
CALCULATION
FLOW
OF
INTELLIGENT
EVALUATION
ALGORITHM
...............216
VII
7.3
EXAMPLE
AND
RESULTS
BASED
ON
THE
INTELLIGENT
EVALUATION
ALGORITHM
.............................................................................................
219
7.3.1
NUMERICAL
ANALYSIS
OF
PIPE
WELDS
...................................
219
7.3.2
EXPERIMENTAL
STUDY
..........................................................
224
7.3.3
DEFECT
DIAGNOSES
...............................................................
230
7.3.4
DEFECTS
QUANTIFICATION
......................................................
235
7.3.5
EVALUATION
PLATFORM
.........................................................
237
7.4
SUMMARY
......................................................................................238
PART
VIII.
MULTI-FIELD
COUPLING
STUDY
OF
SINGLE
DYNAMIC
CRACK
PROPAGATION
ON
OUTER
WALL
OF
PIPELINE
WELD
..........................................
240
8.1
INTRODUCTION
...................................................................................
241
8.2
PRINCIPLE
........................................................................................
242
8.2.1
CRACK
GROWTH
....................................................................
242
8.2.2
MECHANISM
OF
MFL
AT
PIPE
WELD
....................................245
8.3
MAGNETIC-STRUCTURAL
COUPLING
ALGORITHM
....................................
247
8.4
MAGNETIC-STRUCTURAL
COUPLING
......................................................
250
8.4.1
PARAMETERS
COMPUTATION
...................................................
250
8.4.2
ANALYSIS
OF
CRACK
GROWTH
.................................................
251
8.4.3
MFL
CHARACTERIZATION
OF
MAGNETIC-STRUCTURAL
COUPLING.
255
8.5
SUMMARY
.......................................................................................
272
PART
IX.
MULTI-FIELD
COUPLING
STUDY
OF
SINGLE
CRACK
PROPAGATION
ON
INNER
WALL
OF
PIPELINE
WELD
.......................................................................
274
9.1
INTRODUCTION
...................................................................................
275
9.2
FLUID-SOLID-MAGNETIC
MULTI-PHYSICAL
FIELD
MODEL
......................
276
9.3
FLUID-SOLID
MAGNETIC
MULTIFIELD
COUPLING
MATHEMATICAL
MODEL279
9.3.1
MATHEMATICAL
EQUATIONS
...................................................
279
9.3.2
LOAD
APPLICATION
AND
BOUNDARY
CONDITIONS
....................
280
9.4
FLUID-SOLID-MAGNETIC
MULTI-FIELD
COUPLING
ALGORITHM
...............
283
9.5
NUMERICAL
EXAMPLE
1
...................................................................285
9.5.1
CALCULATION
PARAMETERS
....................................................285
9.5.2
INTERNAL
CRACK
GROWTH
.......................................................
286
9.5.3
GRIDDING
RECONSTRUCTION
FOR
THE
INTERNAL
CRACK
...............
290
9.5.4
ANALYSIS
ON
FLUID-SOLID-MAGNETIC
COUPLING
RESULTS
........
291
9.6
NUMERICAL
EXAMPLE
2
...................................................................302
9.6.1
INTERNAL
CRACK
GROWTH
AND
GRIDDING
RECONSTRUCTION
......
302
9.6.2
ANALYSIS
ON
FLUID-SOLID-MAGNETIC
COUPLING
RESULTS
.......306
9.7
SUMMARY
.......................................................................................
314
VIII
PART
X.
COMPARATIVE
STUDY
ON
DYNAMIC
PROPAGATION
OF
SINGLE
AND
DOUBLE
CRACKS
IN
PIPELINE
WELDS
.............................................................316
10.1
INTRODUCTION
................................................................................
317
10.2
COMPUTING
PARAMETERS
..............................................................
318
10.3
FLUID-SOLID
MAGNETIC
COUPLING
ANALYSIS
...................................
321
10.3.1
SINGLE
CRACK
PROPAGATION
AT
DIFFERENT
CIRCUMFERENTIAL
POSITIONS
ON
THE
OUTER
WALL
OF
PIPE
WELD
..................................
321
10.3.2
MULTIPLE
CRACKS
GROW
IN
DIFFERENT
CIRCUMFERENTIAL
POSITIONS
ON
THE
OUTER
WALL
OF
PIPE
...........................................324
10.3.3
COMPARATIVE
ANALYSIS
.....................................................
327
10.4
SUMMARY
.....................................................................................
332
PART
XI.
MULTI-FIELD
COUPLING
STUDY
ON
DYNAMIC
PROPAGATION
OF
COLLINEAR
DOUBLE
CRACKS
IN
PIPELINE
WELDS
.............................................334
11.1
INTRODUCTION
................................................................................
335
11.2
MAGNETIC-STRUCTURAL
COUPLING
ALGORITHM
...................................337
11.3
NUMERICAL
SIMULATION
AND
ANALYSIS
..........................................
342
11.3.1
CALCULATION
PARAMETERS
...................................................
342
11.3.2
CRACK
GROWTH
ANALYSIS
....................................................
344
11.3.3
MAGNETIC
FLUX
LEAKAGE
REPRESENTATION
OF
MAGNETIC-STRUCTURAL
COUPLING
...................................................
347
11.3.4
DISCRIMINATORY
ANALYSIS
.................................................
356
11.4
SUMMARY
....................................................................................
358
PART
XII.
MULTI-FIELD
COUPLING
STUDY
ON
DYNAMIC
GROWTH
OF
CIRCUMFERENTIAL
SYMMETRIC
DOUBLE
CRACKS
IN
PIPELINE
WELDS
..............360
12.1
INTRODUCTION
................................................................................
361
12.2
MAGNETIC
STRUCTURAL
ALGORITHM
..................................................
362
12.3
NUMERICAL
SIMULATION
AND
ANALYSIS
..........................................
366
12.3.1
DESIGN
CONDITIONS
..........................................................
366
12.3.2
ANALYSIS
OF
THE
EFFECT
OF
DOUBLE
CRACKS
........................369
12.4
SUMMARY
....................................................................................
404
XIII
COMPARATIVE
STUDY
ON
DYNAMIC
PROPAGATION
OF
DOUBLE
CRACKS
IN
PIPELINE
WELDS
...........................................................................................
407
13.1
INTRODUCTION
................................................................................408
13.2
MODEL
AND
METHOD
....................................................................409
13.2.1
FLUID-SOLID
MAGNETIC
MULTI-FIELD
COUPLING
METHOD
FOR
COMPARATIVE
STUDY
OF
DYNAMIC
PROPAGATION
OF
DOUBLE
CRACKS
409
13.2.2
MODEL
PARAMETERS
..........................................................
412
IX
13.3
NUMERICAL
EXAMPLES
..................................................................
414
13.3.1
COLLINEAR
DOUBLE
CRACKS
.................................................
414
13.3.2
CIRCUMFERENTIALLY
SYMMETRIC
DOUBLE
CRACKS
................
421
13.4
SUMMARY
.....................................................................................
426
PART
XIV.
INTERFERENCE
STUDY
ON
DYNAMIC
PROPAGATION
OF
MULTIPLE
CRACKS
IN
PIPELINE
WELDS
...........................................................................
429
14.1
INTRODUCTION
.................................................................................
429
14.2
NUMERICAL
SIMULATION
MODEL
OF
MULTI-CRACKS
.........................
431
14.2.1
GEOMETRIC
MODEL
AND
PARAMETER
SETTING
......................
431
14.2.2
FINITE
ELEMENT
MODEL
.....................................................
434
14.3
CRACK
TIP
DISTANCE
AND
SIZE
EFFECT
.............................................
441
14.3.1
CRACK
TIP
DISTANCE
EFFECT
.................................................
441
14.3.2
INFLUENCE
OF
THE
AUXILIARY
CRACK
SIZE
ON
MAIN
CRACK....
446
14.4
COMPARATIVE
ANALYSIS
.................................................................
451
14.5
SUMMARY
.....................................................................................
469
PART
XV.
APPLICATION
OF
MAGNETISM
GATHERING
STRUCTURE
IN
MAGNETIC
FLUX
LEAKAGE
DETECTION
.............................................................................
472
15.1
INTRODUCTION
................................................................................
473
15.2
COMPARATIVE
ANALYSIS
OF
MAGNETIC
LEAKAGE
FIELD
UNDER
THE
CONDITION
OF
TWO
MAGNETISM
GATHERING
STRUCTURES
AND
WITHOUT
MAGNETISM
GATHERING
STRUCTURE
..........................................................
474
15.3
INFLUENCE
OF
DEFECT
DEPTH
VARIATION
ON
MAGNETIC
FLUX
LEAKAGE
UNDER
TWO
MAGNETIZATION
STRUCTURES
AND
NON-MAGNETIZATION
CONDITIONS
............................................................................................
479
15.4
SUMMARY
.....................................................................................
484
PART
XVI.
DESIGN
OF
CONTINUOUS
NON-CONTACT
MAGNETIC
LEAKAGE
SCANNER
FOR
PIPELINE
WELD
.........................................................................
485
16.1
INTRODUCTION
.................................................................................
485
16.2
SELECTION
OF
MAGNETIZATION
MODE
AND
MATERIAL
.......................
486
16.3
MAGNETIC
CIRCUIT
CALCULATION
OF
DETECTION
PROBE
......................
490
16.3.1
DESIGN
SCHEME
OF
MAGNETIC
CIRCUIT
...............................
492
16.3.2
MAGNETIC
CIRCUIT
CALCULATION
..........................................493
16.4
SELECTION
AND
APPLICATION
OF
SENSORS
........................................495
16.4.1
SELECTION
OF
SENSORS
.......................................................495
16.4.2
APPLICATION
OF
SENSORS
....................................................
499
16.5
DATA
COLLECTION
...........................................................................500
16.5.1
APPLICATION
OF
THE
DATA
ACQUISITION
CARD
.......................
500
X
16.5.2
SELECTION
OF
SAMPLING
METHOD
.......................................
505
16.5.3
ANALOG
SIGNAL
FILTERING
...................................................
507
16.5.4
DIGITAL
FILTERING
..............................................................
508
16.6
TECHNICAL
SOLUTIONS
.....................................................................
510
16.7
SPECIFIC
IMPLEMENTATION
METHODS
............................................
512
16.8
WORKING
METHOD
AND
SCOPE
OF
APPLICATION
..............................
522
16.8.1
WORKING
METHOD
.............................................................
522
16.8.2
APPLICATION
SCOPE
...........................................................
523
16.9
SUMMARY
....................................................................................
524
PART
XVII.
A
RECOGNITION
ALGORITHM
TO
DETECT
PIPE
WELD
DEFECTS
....
526
17.1
INTRODUCTION
................................................................................
527
17.2
ALGORITHM
...................................................................................
527
17.3
NUMERICAL
EXAMPLE
...................................................................
530
17.3.1
ACQUISITION
OF
THREE-DIMENSIONAL
SIGNAL
......................
530
17.3.2
EXTRACTION
OF
THE
GGCM
CHARACTERISTICS
......................
534
17.3.3
K-MEANS
CLUSTERING
........................................................
535
17.3.4
EDGE
DETECTION
FOR
WELD
DEFECTS
....................................
538
17.4
SUMMARY
....................................................................................
541
XI
|
adam_txt |
CONTENTS
PREFACE
ACKNOWLEDGEMENTS
ABOUT
THE
AUTHOR
PART
I.
MAGNETIC
FLUX
LEAKAGE
TESTING
TECHNOLOGY
FOR
WELDING
SEAM
OF
STORAGE
AND
TRANSPORTATION
EQUIPMENT:
A
REVIEW
.
1
1.1
INTRODUCTION
.
1
1.2
COMMON
NONDESTRUCTIVE
TESTING
METHODS
FOR
WELDS
.
4
1.3
RESEARCH
STATUS
OF
MAGNETIC
FLUX
LEAKAGE
DETECTION
METHODS
AT
HOME
AND
ABROAD
.
17
1.3.1
DEVELOPMENT
AND
RESEARCH
STATUS
OF
MAGNETIC
FLUX
LEAKAGE
DETECTION
THEORY
AT
HOME
AND
ABROAD
.
19
1.3.2
DEVELOPMENT
AND
APPLICATION
OF
MAGNETIC
FLUX
LEAKAGE
TESTING
INSTRUMENTS
AT
HOME
AND
ABROAD
.24
1.3.3
RESEARCH
STATUS
OF
MFL
SIGNAL
RECOGNITION
TECHNOLOGY
.27
1.4
RESEARCH
STATUS
OF
IMAGE
RECOGNITION
TECHNOLOGY
AT
HOME
AND
ABROAD
AND
ITS
APPLICATION
IN
THE
FIELD
OF
NONDESTRUCTIVE
TESTING
.
30
1.4.1
DEVELOPMENT
AND
APPLICATION
OF
IMAGE
RECOGNITION
TECHNOLOGY
.
31
1.4.2
IMAGE
TEXTURE
FEATURE
EXTRACTION
METHOD
.
34
1.4.3
RESEARCH
STATUS
OF
MATHEMATICAL
MORPHOLOGY
.
37
1.5
RESEARCH
STATUS
OF
DYNAMIC
CRACK
PROPAGATION
ANALYSIS
AT
HOME
AND
ABROAD
.
40
1.6
SUMMARY
.
51
1.7
REFERENCES
.
54
PART
II.
LEAKAGE
MAGNETIC
FIELD
ANALYSIS
OF
STATIC
CRACK
IN
BOTTOM
PLATE
WELD
OF
STORAGE
TANK
.
80
2.1
INTRODUCTION
.
80
2.2
MAGNETIC
FLUX
LEAKAGE
DETECTION
PRINCIPLE
OF
WELDING
SEAM
ON
TANK
BOTTOM
PLATE
.
81
2.3
THEORETICAL
CALCULATION
METHOD
OF
LEAKAGE
MAGNETIC
FIELD
.
83
2.3.1
MAGNETIC
DIPOLE
MODEL
.
84
2.3.2
BASIC
THEORY
OF
ELECTROMAGNETIC
FIELD
.
86
2.3.3
APPLICATION
OF
FEM
IN
MAGNETIC
LEAKAGE
FIELD
ANALYSIS
.87
2.4
INFLUENCING
FACTORS
OF
MAGNETIC
LEAKAGE
.
90
IV
2.5
FEM
MODEL
OF
LEAKAGE
MAGNETIC
FIELD
OF
WELD
CRACK
ON
BOTTOM
PLATE
OF
STORAGE
TANK
.
91
2.5.1
ESTABLISHMENT
OF
3D
NUMERICAL
MODEL
.
91
2.5.2
MODEL
GRID
DIVISION
.
94
2.5.3
BOUNDARY
CONDITIONS
AND
SOLUTION
RESULTS
OF
THE
MODEL
.99
2.6
ANALYSIS
OF
MAGNETIC
FIELD
LEAKAGE
RESULTS
OF
WELD
CRACKS
ON
BOTTOM
PLATE
OF
STORAGE
TANK
.
100
2.7
INFLUENCE
ANALYSIS
OF
WELD-RELATED
STRUCTURES
.
105
2.7.1
INFLUENCE
ANALYSIS
OF
WELD
SHAPE
DIMENSION
.
105
2.7.2
COMPARATIVE
ANALYSIS
BETWEEN
SINGLE-SIDE
WELDING
AND
DOUBLE-SIDE
WELDING
WITHOUT
DEFECTS
.
107
2.7.3
IMPACT
ANALYSIS
OF
BACKING
PLATE
.
110
2.8
IMPACT
ANALYSIS
OF
DEFECT
CHARACTERISTICS
.
116
2.8.1
WELD
CRACKS
OF
DIFFERENT
DEPTHS
.
116
2.8.2
WELD
CRACKS
OF
DIFFERENT
WIDTHS
.
126
2.8.3
WELD
CRACKS
OF
DIFFERENT
LENGTHS
.
127
2.8.4
IMPACT
ANALYSIS
WHEN
TWO
RECTANGULAR
GROOVE
DEFECTS
EXIST
SIMULTANEOUSLY
.
129
2.9
SUMMARY
.
133
PART
III.
DEVELOPMENT
AND
EXPERIMENTAL
STUDY
OF
NON-CONTACT
MAGNETIC
FLUX
LEAKAGE
TESTING
SYSTEM
FOR
WELDING
SEAM
OF
TANK
BOTTOM
PLATE
.
136
3.1
INTRODUCTION
.
136
3.2
OVERALL
DESIGN
SCHEME
.
136
3.3
BASIC
TYPES
OF
MAGNETIC
CIRCUITS
.
137
3.4
STRUCTURAL
DESIGN
OF
DETECTION
SYSTEM
.
139
3.5
WELD
CRACK
DEFECTS
.
142
3.6
DETERMINE
THE
EXPERIMENTAL
SCHEME
AND
MAKE
THE
DEFECTS
OF
THE
EXPERIMENTAL
BOARD
.
143
3.6.1
DETERMINATION
OF
EXPERIMENTAL
SCHEME
.
143
3.6.2
PREPARATION
OF
EXPERIMENTAL
BOARDS
AND
DEFECTS
.
145
3.7
CURVE
DISPLAY
AND
RECOGNITION
OF
MFL
DATA
OF
WELD
DEFECTS.
147
3.7.1
COLLECTION
OF
MAGNETIC
FLUX
LEAKAGE
DATA
OF
WELD
DEFECTS
AND
CURVE
DISPLAY
.
147
3.7.2
ANALYSIS
AND
IDENTIFICATION
OF
MAGNETIC
FLUX
LEAKAGE
CURVE
OF
WELD
DEFECTS
.
150
3.8
COMPARATIVE
ANALYSIS
OF
EXPERIMENTAL
DATA
AND
FINITE
ELEMENT
V
DATA
.
155
3.9
SUMMARY
.
158
PART
IV.
VISUAL
IMAGE
DISPLAY
OF
MAGNETIC
FLUX
LEAKAGE
DETECTION
DATA
FOR
WELD
DEFECTS
IN
TANK
PLATE
.
160
4.1
INTRODUCTION
.
160
4.2
IMAGE
EXPRESSION
OF
MFL
DATA
OF
WELD
DEFECTS
AND
CHARACTERISTICS
OF
MFL
IMAGE
161
4.2.1
IMAGE
DISPLAY
OF
MAGNETIC
FLUX
LEAKAGE
DATA
OF
WELD
DEFECTS
.
161
4.2.2
CHARACTERISTICS
OF
MAGNETIC
FLUX
LEAKAGE
IMAGE
OF
WELD
DEFECTS
.
162
4.3
PSEUDO-COLOR
IMAGE
DISPLAY
OF
MFL
IMAGES
OF
WELD
DEFECTS
.
165
4.3.1
PSEUDO-COLOR
PRINCIPLE
.
165
4.3.2
COLOR
MODEL
FOR
PSEUDO-COLOR
PROCESSING
OF
MFL
IMAGE
OF
WELD
DEFECT
-
RGB
COLOR
MODEL
.
166
4.3.3
PSEUDO-COLOR
PROCESSING
METHOD
AND
RESULT
DISPLAY
OF
MAGNETIC
FLUX
LEAKAGE
IMAGE
OF
WELD
DEFECTS
.
167
4.4
STATISTICAL
CHARACTERISTICS
OF
MFL
IMAGES
OF
WELD
DEFECTS
.
169
4.5
SUMMARY
.
173
PART
V.
CLUSTER
ANALYSIS
OF
MFL
IMAGES
OF
WELD
DEFECTS
IN
TANK
PLATE
BASED
ON
GRAY-GRADIENT
CO-OCCURRENCE
MATRIX
175
5.1
INTRODUCTION
.
175
5.2
GRAY-GRADIENT
CO-OCCURRENCE
MATRIX
.
175
5.2.1
NORMALIZATION
OF
GRAY
SCALE
AND
GRADIENT
.
176
5.2.2
CALCULATION
OF
GRAY-GRADIENT
CO-OCCURRENCE
MATRIX
.
178
5.2.3
IMAGE
FEATURE
CALCULATION
OF
GRAY-GRADIENT
CO-OCCURRENCE
MATRIX
.
178
5.3
THE
SELECTION
ALGORITHM
OF
GRAY-GRADIENT
CO-OCCURRENCE
MATRIX
FEATURE
CLUSTERING
ANALYSIS
FOR
MFL
IMAGES
OF
WELD
DEFECTS
181
5.3.1
CONDENSED
HIERARCHICAL
ALGORITHM
.
181
5.3.2 K-MEANS
ALGORITHM
.
183
5.4
EXAMPLE
ANALYSIS
1
.
184
5.4.1
EXTRACTION
OF
GRAY-GRADIENT
CO-OCCURRENCE
MATRIX
FEATURE
QUANTITIES
OF
WELDS
AND
DEFECTS
.
184
5.4.2
FEATURE
SELECTION
OF
WELD
AND
DEFECT
BASED
ON
HIERARCHICAL
CLUSTERING
.
185
5.4.3
K-MEANS
CLUSTERING
ANALYSIS
AND
RESULT
DISPLAY
OF
WELDS
VI
AND
DEFECTS
.
187
5.5
EXAMPLE
ANALYSIS
2
.
190
5.5.1
EXTRACTION
OF
GRAY-GRADIENT
CO-OCCURRENCE
MATRIX
FEATURE
QUANTITIES
OF
WELD
DEFECTS
AND
HEAT-AFFECTED
ZONE
DEFECTS
.
190
5.5.2
FEATURE
SELECTION
OF
WELD
DEFECTS
AND
HEAT-AFFECTED
ZONE
DEFECTS
BASED
ON
HIERARCHICAL
CLUSTERING
.
191
5.5.3
K-MEANS
CLUSTERING
ANALYSIS
AND
RESULT
DISPLAY
OF
WELD
PATH
DEFECTS
AND
HEAT-AFFECTED
ZONE
DEFECTS
192
5.6
SUMMARY
.
195
PART
VI.
EXTRACTION
METHOD
AND
PRINCIPLE
OF
WELD
CRACK
OF
STORAGE
AND
TRANSPORTATION
EQUIPMENT
IN
MAGNETIC
FLUX
LEAKAGE
DETECTION
IMAGE
197
6.1
INTRODUCTION
197
6.2
CLASSICAL
EDGE
DETECTION
OPERATOR
.
197
6.2.1
SOBEL
EDGE
DETECTION
OPERATOR
.
198
6.2.2
ROBERTS
EDGE
DETECTION
OPERATOR
.
199
6.2.3
LAPLACIAN
EDGE
DETECTION
OPERATOR
.
199
6.2.4
CANNY
EDGE
DETECTION
OPERATOR
.200
6.2.5
MAGNETIC
FLUX
LEAKAGE
IMAGE
DETECTION
RESULTS
AND
ANALYSIS
OF
WELD
CRACKS
200
6.3
BASIC
THEORY
OF
MATHEMATICAL
MORPHOLOGY
AND
SELECTION
OF
STRUCTURAL
ELEMENTS
OF
MFL
IMAGE
OF
WELD
CRACK
.202
6.3.1
BINARY
MORPHOLOGY
.
202
6.3.2
GRAY
SCALE
MORPHOLOGY
.
204
6.3.3
PRINCIPLE
OF
EDGE
DETECTION
IN
MORPHOLOGY
.
205
6.3.4
SELECTION
OF
STRUCTURAL
ELEMENTS
IN
MFL
IMAGE
OF
WELD
CRACK
206
6.4
MORPHOLOGICAL
ALGORITHM
PRINCIPLE
OF
MAGNETIC
FLUX
LEAKAGE
IMAGE
OF
WELD
CRACK
.208
6.4.1
HISTOGRAM
BALANCING
.208
6.4.2
OTSU
BINARIZATION
.209
6.4.3
MATHEMATICAL
MORPHOLOGY
TO
REMOVE
SMALL
OBJECTS
.
211
6.4.4
EDGE
DETECTION
.212
6.5
SUMMARY
.212
PART
VIL
INTELLIGENT
EVALUATION
ALGORITHM
FOR
THE
STRUCTURAL
INTEGRITY
TESTING
OF
DYNAMIC
CRACK
OF
PIPE
WELDS
.
214
7.1
INTRODUCTION
.
215
7.2
CALCULATION
FLOW
OF
INTELLIGENT
EVALUATION
ALGORITHM
.216
VII
7.3
EXAMPLE
AND
RESULTS
BASED
ON
THE
INTELLIGENT
EVALUATION
ALGORITHM
.
219
7.3.1
NUMERICAL
ANALYSIS
OF
PIPE
WELDS
.
219
7.3.2
EXPERIMENTAL
STUDY
.
224
7.3.3
DEFECT
DIAGNOSES
.
230
7.3.4
DEFECTS
QUANTIFICATION
.
235
7.3.5
EVALUATION
PLATFORM
.
237
7.4
SUMMARY
.238
PART
VIII.
MULTI-FIELD
COUPLING
STUDY
OF
SINGLE
DYNAMIC
CRACK
PROPAGATION
ON
OUTER
WALL
OF
PIPELINE
WELD
.
240
8.1
INTRODUCTION
.
241
8.2
PRINCIPLE
.
242
8.2.1
CRACK
GROWTH
.
242
8.2.2
MECHANISM
OF
MFL
AT
PIPE
WELD
.245
8.3
MAGNETIC-STRUCTURAL
COUPLING
ALGORITHM
.
247
8.4
MAGNETIC-STRUCTURAL
COUPLING
.
250
8.4.1
PARAMETERS
COMPUTATION
.
250
8.4.2
ANALYSIS
OF
CRACK
GROWTH
.
251
8.4.3
MFL
CHARACTERIZATION
OF
MAGNETIC-STRUCTURAL
COUPLING.
255
8.5
SUMMARY
.
272
PART
IX.
MULTI-FIELD
COUPLING
STUDY
OF
SINGLE
CRACK
PROPAGATION
ON
INNER
WALL
OF
PIPELINE
WELD
.
274
9.1
INTRODUCTION
.
275
9.2
FLUID-SOLID-MAGNETIC
MULTI-PHYSICAL
FIELD
MODEL
.
276
9.3
FLUID-SOLID
MAGNETIC
MULTIFIELD
COUPLING
MATHEMATICAL
MODEL279
9.3.1
MATHEMATICAL
EQUATIONS
.
279
9.3.2
LOAD
APPLICATION
AND
BOUNDARY
CONDITIONS
.
280
9.4
FLUID-SOLID-MAGNETIC
MULTI-FIELD
COUPLING
ALGORITHM
.
283
9.5
NUMERICAL
EXAMPLE
1
.285
9.5.1
CALCULATION
PARAMETERS
.285
9.5.2
INTERNAL
CRACK
GROWTH
.
286
9.5.3
GRIDDING
RECONSTRUCTION
FOR
THE
INTERNAL
CRACK
.
290
9.5.4
ANALYSIS
ON
FLUID-SOLID-MAGNETIC
COUPLING
RESULTS
.
291
9.6
NUMERICAL
EXAMPLE
2
.302
9.6.1
INTERNAL
CRACK
GROWTH
AND
GRIDDING
RECONSTRUCTION
.
302
9.6.2
ANALYSIS
ON
FLUID-SOLID-MAGNETIC
COUPLING
RESULTS
.306
9.7
SUMMARY
.
314
VIII
PART
X.
COMPARATIVE
STUDY
ON
DYNAMIC
PROPAGATION
OF
SINGLE
AND
DOUBLE
CRACKS
IN
PIPELINE
WELDS
.316
10.1
INTRODUCTION
.
317
10.2
COMPUTING
PARAMETERS
.
318
10.3
FLUID-SOLID
MAGNETIC
COUPLING
ANALYSIS
.
321
10.3.1
SINGLE
CRACK
PROPAGATION
AT
DIFFERENT
CIRCUMFERENTIAL
POSITIONS
ON
THE
OUTER
WALL
OF
PIPE
WELD
.
321
10.3.2
MULTIPLE
CRACKS
GROW
IN
DIFFERENT
CIRCUMFERENTIAL
POSITIONS
ON
THE
OUTER
WALL
OF
PIPE
.324
10.3.3
COMPARATIVE
ANALYSIS
.
327
10.4
SUMMARY
.
332
PART
XI.
MULTI-FIELD
COUPLING
STUDY
ON
DYNAMIC
PROPAGATION
OF
COLLINEAR
DOUBLE
CRACKS
IN
PIPELINE
WELDS
.334
11.1
INTRODUCTION
.
335
11.2
MAGNETIC-STRUCTURAL
COUPLING
ALGORITHM
.337
11.3
NUMERICAL
SIMULATION
AND
ANALYSIS
.
342
11.3.1
CALCULATION
PARAMETERS
.
342
11.3.2
CRACK
GROWTH
ANALYSIS
.
344
11.3.3
MAGNETIC
FLUX
LEAKAGE
REPRESENTATION
OF
MAGNETIC-STRUCTURAL
COUPLING
.
347
11.3.4
DISCRIMINATORY
ANALYSIS
.
356
11.4
SUMMARY
.
358
PART
XII.
MULTI-FIELD
COUPLING
STUDY
ON
DYNAMIC
GROWTH
OF
CIRCUMFERENTIAL
SYMMETRIC
DOUBLE
CRACKS
IN
PIPELINE
WELDS
.360
12.1
INTRODUCTION
.
361
12.2
MAGNETIC
STRUCTURAL
ALGORITHM
.
362
12.3
NUMERICAL
SIMULATION
AND
ANALYSIS
.
366
12.3.1
DESIGN
CONDITIONS
.
366
12.3.2
ANALYSIS
OF
THE
EFFECT
OF
DOUBLE
CRACKS
.369
12.4
SUMMARY
.
404
XIII
COMPARATIVE
STUDY
ON
DYNAMIC
PROPAGATION
OF
DOUBLE
CRACKS
IN
PIPELINE
WELDS
.
407
13.1
INTRODUCTION
.408
13.2
MODEL
AND
METHOD
.409
13.2.1
FLUID-SOLID
MAGNETIC
MULTI-FIELD
COUPLING
METHOD
FOR
COMPARATIVE
STUDY
OF
DYNAMIC
PROPAGATION
OF
DOUBLE
CRACKS
409
13.2.2
MODEL
PARAMETERS
.
412
IX
13.3
NUMERICAL
EXAMPLES
.
414
13.3.1
COLLINEAR
DOUBLE
CRACKS
.
414
13.3.2
CIRCUMFERENTIALLY
SYMMETRIC
DOUBLE
CRACKS
.
421
13.4
SUMMARY
.
426
PART
XIV.
INTERFERENCE
STUDY
ON
DYNAMIC
PROPAGATION
OF
MULTIPLE
CRACKS
IN
PIPELINE
WELDS
.
429
14.1
INTRODUCTION
.
429
14.2
NUMERICAL
SIMULATION
MODEL
OF
MULTI-CRACKS
.
431
14.2.1
GEOMETRIC
MODEL
AND
PARAMETER
SETTING
.
431
14.2.2
FINITE
ELEMENT
MODEL
.
434
14.3
CRACK
TIP
DISTANCE
AND
SIZE
EFFECT
.
441
14.3.1
CRACK
TIP
DISTANCE
EFFECT
.
441
14.3.2
INFLUENCE
OF
THE
AUXILIARY
CRACK
SIZE
ON
MAIN
CRACK.
446
14.4
COMPARATIVE
ANALYSIS
.
451
14.5
SUMMARY
.
469
PART
XV.
APPLICATION
OF
MAGNETISM
GATHERING
STRUCTURE
IN
MAGNETIC
FLUX
LEAKAGE
DETECTION
.
472
15.1
INTRODUCTION
.
473
15.2
COMPARATIVE
ANALYSIS
OF
MAGNETIC
LEAKAGE
FIELD
UNDER
THE
CONDITION
OF
TWO
MAGNETISM
GATHERING
STRUCTURES
AND
WITHOUT
MAGNETISM
GATHERING
STRUCTURE
.
474
15.3
INFLUENCE
OF
DEFECT
DEPTH
VARIATION
ON
MAGNETIC
FLUX
LEAKAGE
UNDER
TWO
MAGNETIZATION
STRUCTURES
AND
NON-MAGNETIZATION
CONDITIONS
.
479
15.4
SUMMARY
.
484
PART
XVI.
DESIGN
OF
CONTINUOUS
NON-CONTACT
MAGNETIC
LEAKAGE
SCANNER
FOR
PIPELINE
WELD
.
485
16.1
INTRODUCTION
.
485
16.2
SELECTION
OF
MAGNETIZATION
MODE
AND
MATERIAL
.
486
16.3
MAGNETIC
CIRCUIT
CALCULATION
OF
DETECTION
PROBE
.
490
16.3.1
DESIGN
SCHEME
OF
MAGNETIC
CIRCUIT
.
492
16.3.2
MAGNETIC
CIRCUIT
CALCULATION
.493
16.4
SELECTION
AND
APPLICATION
OF
SENSORS
.495
16.4.1
SELECTION
OF
SENSORS
.495
16.4.2
APPLICATION
OF
SENSORS
.
499
16.5
DATA
COLLECTION
.500
16.5.1
APPLICATION
OF
THE
DATA
ACQUISITION
CARD
.
500
X
16.5.2
SELECTION
OF
SAMPLING
METHOD
.
505
16.5.3
ANALOG
SIGNAL
FILTERING
.
507
16.5.4
DIGITAL
FILTERING
.
508
16.6
TECHNICAL
SOLUTIONS
.
510
16.7
SPECIFIC
IMPLEMENTATION
METHODS
.
512
16.8
WORKING
METHOD
AND
SCOPE
OF
APPLICATION
.
522
16.8.1
WORKING
METHOD
.
522
16.8.2
APPLICATION
SCOPE
.
523
16.9
SUMMARY
.
524
PART
XVII.
A
RECOGNITION
ALGORITHM
TO
DETECT
PIPE
WELD
DEFECTS
.
526
17.1
INTRODUCTION
.
527
17.2
ALGORITHM
.
527
17.3
NUMERICAL
EXAMPLE
.
530
17.3.1
ACQUISITION
OF
THREE-DIMENSIONAL
SIGNAL
.
530
17.3.2
EXTRACTION
OF
THE
GGCM
CHARACTERISTICS
.
534
17.3.3
K-MEANS
CLUSTERING
.
535
17.3.4
EDGE
DETECTION
FOR
WELD
DEFECTS
.
538
17.4
SUMMARY
.
541
XI |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Cui, Wei |
author_facet | Cui, Wei |
author_role | aut |
author_sort | Cui, Wei |
author_variant | w c wc |
building | Verbundindex |
bvnumber | BV049022408 |
classification_rvk | ZM 3700 |
ctrlnum | (OCoLC)1360423268 (DE-599)DNB1270186930 |
discipline | Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Werkstoffwissenschaften / Fertigungstechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02081nam a22005298c 4500</leader><controlfield tag="001">BV049022408</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231218 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230627s2022 gw |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,N42</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1270186930</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783869488806</subfield><subfield code="9">978-3-86948-880-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1360423268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1270186930</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-NI</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 3700</subfield><subfield code="0">(DE-625)157028:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">620</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cui, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnetic flux leakage testing technology for welding seam of storage and transportation equipment</subfield><subfield code="c">Wei Cui</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Clausthal-Zellerfeld</subfield><subfield code="b">Papierflieger</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 542 Seiten</subfield><subfield code="c">21 cm x 15 cm, 715 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schweißnahtprüfung</subfield><subfield code="0">(DE-588)4180466-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetische Werkstoffprüfung</subfield><subfield code="0">(DE-588)4168568-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Leck</subfield><subfield code="0">(DE-588)4167086-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tank</subfield><subfield code="0">(DE-588)4125647-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pipeline</subfield><subfield code="0">(DE-588)4125984-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Testing Technology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Magnetic</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Flux Leakage</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Tank</subfield><subfield code="0">(DE-588)4125647-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Pipeline</subfield><subfield code="0">(DE-588)4125984-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Leck</subfield><subfield code="0">(DE-588)4167086-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Magnetische Werkstoffprüfung</subfield><subfield code="0">(DE-588)4168568-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Schweißnahtprüfung</subfield><subfield code="0">(DE-588)4180466-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034285280&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034285280</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20221013</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
id | DE-604.BV049022408 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:14:11Z |
indexdate | 2024-07-10T09:53:03Z |
institution | BVB |
isbn | 9783869488806 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034285280 |
oclc_num | 1360423268 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | XI, 542 Seiten 21 cm x 15 cm, 715 g |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Papierflieger |
record_format | marc |
spelling | Cui, Wei aut Magnetic flux leakage testing technology for welding seam of storage and transportation equipment Wei Cui Clausthal-Zellerfeld Papierflieger 2022 XI, 542 Seiten 21 cm x 15 cm, 715 g txt rdacontent n rdamedia nc rdacarrier Schweißnahtprüfung (DE-588)4180466-1 gnd rswk-swf Magnetische Werkstoffprüfung (DE-588)4168568-4 gnd rswk-swf Leck (DE-588)4167086-3 gnd rswk-swf Tank (DE-588)4125647-5 gnd rswk-swf Bildverarbeitung (DE-588)4006684-8 gnd rswk-swf Pipeline (DE-588)4125984-1 gnd rswk-swf Testing Technology Magnetic Flux Leakage Tank (DE-588)4125647-5 s Pipeline (DE-588)4125984-1 s Leck (DE-588)4167086-3 s Magnetische Werkstoffprüfung (DE-588)4168568-4 s Schweißnahtprüfung (DE-588)4180466-1 s Bildverarbeitung (DE-588)4006684-8 s DE-604 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034285280&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20221013 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Cui, Wei Magnetic flux leakage testing technology for welding seam of storage and transportation equipment Schweißnahtprüfung (DE-588)4180466-1 gnd Magnetische Werkstoffprüfung (DE-588)4168568-4 gnd Leck (DE-588)4167086-3 gnd Tank (DE-588)4125647-5 gnd Bildverarbeitung (DE-588)4006684-8 gnd Pipeline (DE-588)4125984-1 gnd |
subject_GND | (DE-588)4180466-1 (DE-588)4168568-4 (DE-588)4167086-3 (DE-588)4125647-5 (DE-588)4006684-8 (DE-588)4125984-1 |
title | Magnetic flux leakage testing technology for welding seam of storage and transportation equipment |
title_auth | Magnetic flux leakage testing technology for welding seam of storage and transportation equipment |
title_exact_search | Magnetic flux leakage testing technology for welding seam of storage and transportation equipment |
title_exact_search_txtP | Magnetic flux leakage testing technology for welding seam of storage and transportation equipment |
title_full | Magnetic flux leakage testing technology for welding seam of storage and transportation equipment Wei Cui |
title_fullStr | Magnetic flux leakage testing technology for welding seam of storage and transportation equipment Wei Cui |
title_full_unstemmed | Magnetic flux leakage testing technology for welding seam of storage and transportation equipment Wei Cui |
title_short | Magnetic flux leakage testing technology for welding seam of storage and transportation equipment |
title_sort | magnetic flux leakage testing technology for welding seam of storage and transportation equipment |
topic | Schweißnahtprüfung (DE-588)4180466-1 gnd Magnetische Werkstoffprüfung (DE-588)4168568-4 gnd Leck (DE-588)4167086-3 gnd Tank (DE-588)4125647-5 gnd Bildverarbeitung (DE-588)4006684-8 gnd Pipeline (DE-588)4125984-1 gnd |
topic_facet | Schweißnahtprüfung Magnetische Werkstoffprüfung Leck Tank Bildverarbeitung Pipeline |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034285280&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cuiwei magneticfluxleakagetestingtechnologyforweldingseamofstorageandtransportationequipment |