Machine learning with R: learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data
Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Fourth Edition provides a hands-on, accessible, and readable guide to applying...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham
Packt Publishing
2023
|
Ausgabe: | Fourth edition |
Online-Zugang: | DE-1043 DE-Aug4 DE-573 DE-898 DE-2070s DE-91 DE-706 Volltext |
Zusammenfassung: | Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Fourth Edition provides a hands-on, accessible, and readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need for data pre-processing, uncovering key insights, making new predictions, and visualizing your findings. This 10th Anniversary Edition features several new chapters that reflect the progress of ML in the last few years and help you build your data science skills and tackle more challenging problems, including making successful ML models and advanced data preparation, building better learners, and making use of big data. You'll also find updates to the classic R data science book to R 4.0.0 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Whether you're looking to take your first steps with R for machine learning or making sure your skills and knowledge are up to date, this is an unmissable read. Find powerful new insights in your data; discover machine learning with R. |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xxi, 761 Seiten) |
ISBN: | 9781801076050 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049020368 | ||
003 | DE-604 | ||
005 | 20250113 | ||
007 | cr|uuu---uuuuu | ||
008 | 230626s2023 xx o|||| 00||| eng d | ||
020 | |a 9781801076050 |9 978-1-80107-605-0 | ||
035 | |a (ZDB-30-PQE)EBC30547398 | ||
035 | |a (ZDB-30-PAD)EBC30547398 | ||
035 | |a (ZDB-89-EBL)EBL30547398 | ||
035 | |a (ZDB-221-PDA)9781801076050 | ||
035 | |a (OCoLC)1381263012 | ||
035 | |a (DE-599)BVBBV049020368 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-91 |a DE-573 |a DE-Aug4 |a DE-706 |a DE-898 |a DE-2070s | ||
100 | 1 | |a Lantz, Brett |e Verfasser |0 (DE-588)1060647117 |4 aut | |
245 | 1 | 0 | |a Machine learning with R |b learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data |c Brett Lantz |
250 | |a Fourth edition | ||
264 | 1 | |a Birmingham |b Packt Publishing |c 2023 | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (xxi, 761 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Fourth Edition provides a hands-on, accessible, and readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need for data pre-processing, uncovering key insights, making new predictions, and visualizing your findings. This 10th Anniversary Edition features several new chapters that reflect the progress of ML in the last few years and help you build your data science skills and tackle more challenging problems, including making successful ML models and advanced data preparation, building better learners, and making use of big data. You'll also find updates to the classic R data science book to R 4.0.0 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Whether you're looking to take your first steps with R for machine learning or making sure your skills and knowledge are up to date, this is an unmissable read. Find powerful new insights in your data; discover machine learning with R. | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-80107-132-1 |w (DE-604)BV049362141 |
856 | 4 | 0 | |u https://portal.igpublish.com/iglibrary/search/PACKT0006666.html |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-221-PPK | ||
912 | |a ZDB-221-PDA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034283275 | |
966 | e | |u https://ebookcentral.proquest.com/lib/th-ab/detail.action?docID=30547398 |l DE-1043 |p ZDB-30-PQE |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006666.html |l DE-Aug4 |p ZDB-221-PDA |q FHA_PDA_PPK_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006666.html |l DE-573 |p ZDB-221-PDA |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006666.html |l DE-898 |p ZDB-221-PDA |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=30547398 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006666.html |l DE-91 |p ZDB-221-PDA |q TUM_Paketkauf_2024 |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006666.html |l DE-706 |p ZDB-221-PDA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1821123679377948672 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Lantz, Brett |
author_GND | (DE-588)1060647117 |
author_facet | Lantz, Brett |
author_role | aut |
author_sort | Lantz, Brett |
author_variant | b l bl |
building | Verbundindex |
bvnumber | BV049020368 |
collection | ZDB-30-PQE ZDB-221-PPK ZDB-221-PDA |
ctrlnum | (ZDB-30-PQE)EBC30547398 (ZDB-30-PAD)EBC30547398 (ZDB-89-EBL)EBL30547398 (ZDB-221-PDA)9781801076050 (OCoLC)1381263012 (DE-599)BVBBV049020368 |
edition | Fourth edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049020368</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250113</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230626s2023 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781801076050</subfield><subfield code="9">978-1-80107-605-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC30547398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC30547398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL30547398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-221-PDA)9781801076050</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1381263012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049020368</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-2070s</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lantz, Brett</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1060647117</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning with R</subfield><subfield code="b">learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data</subfield><subfield code="c">Brett Lantz</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Fourth edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxi, 761 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Fourth Edition provides a hands-on, accessible, and readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need for data pre-processing, uncovering key insights, making new predictions, and visualizing your findings. This 10th Anniversary Edition features several new chapters that reflect the progress of ML in the last few years and help you build your data science skills and tackle more challenging problems, including making successful ML models and advanced data preparation, building better learners, and making use of big data. You'll also find updates to the classic R data science book to R 4.0.0 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Whether you're looking to take your first steps with R for machine learning or making sure your skills and knowledge are up to date, this is an unmissable read. Find powerful new insights in your data; discover machine learning with R.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-80107-132-1</subfield><subfield code="w">(DE-604)BV049362141</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006666.html</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PPK</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PDA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034283275</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-ab/detail.action?docID=30547398</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006666.html</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="q">FHA_PDA_PPK_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006666.html</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006666.html</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=30547398</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006666.html</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="q">TUM_Paketkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006666.html</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049020368 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:13:40Z |
indexdate | 2025-01-13T09:01:19Z |
institution | BVB |
isbn | 9781801076050 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034283275 |
oclc_num | 1381263012 |
open_access_boolean | |
owner | DE-1043 DE-91 DE-BY-TUM DE-573 DE-Aug4 DE-706 DE-898 DE-BY-UBR DE-2070s |
owner_facet | DE-1043 DE-91 DE-BY-TUM DE-573 DE-Aug4 DE-706 DE-898 DE-BY-UBR DE-2070s |
physical | 1 Online-Ressource (xxi, 761 Seiten) |
psigel | ZDB-30-PQE ZDB-221-PPK ZDB-221-PDA ZDB-221-PDA FHA_PDA_PPK_Kauf ZDB-30-PQE HWR_PDA_PQE ZDB-221-PDA TUM_Paketkauf_2024 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Packt Publishing |
record_format | marc |
spelling | Lantz, Brett Verfasser (DE-588)1060647117 aut Machine learning with R learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data Brett Lantz Fourth edition Birmingham Packt Publishing 2023 © 2023 1 Online-Ressource (xxi, 761 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Fourth Edition provides a hands-on, accessible, and readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need for data pre-processing, uncovering key insights, making new predictions, and visualizing your findings. This 10th Anniversary Edition features several new chapters that reflect the progress of ML in the last few years and help you build your data science skills and tackle more challenging problems, including making successful ML models and advanced data preparation, building better learners, and making use of big data. You'll also find updates to the classic R data science book to R 4.0.0 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Whether you're looking to take your first steps with R for machine learning or making sure your skills and knowledge are up to date, this is an unmissable read. Find powerful new insights in your data; discover machine learning with R. Erscheint auch als Druck-Ausgabe 978-1-80107-132-1 (DE-604)BV049362141 https://portal.igpublish.com/iglibrary/search/PACKT0006666.html Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Lantz, Brett Machine learning with R learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data |
title | Machine learning with R learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data |
title_auth | Machine learning with R learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data |
title_exact_search | Machine learning with R learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data |
title_exact_search_txtP | Machine learning with R learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data |
title_full | Machine learning with R learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data Brett Lantz |
title_fullStr | Machine learning with R learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data Brett Lantz |
title_full_unstemmed | Machine learning with R learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data Brett Lantz |
title_short | Machine learning with R |
title_sort | machine learning with r learn techniques for building and improving machine learning models from data preparation to model tuning evaluation and working with big data |
title_sub | learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data |
url | https://portal.igpublish.com/iglibrary/search/PACKT0006666.html |
work_keys_str_mv | AT lantzbrett machinelearningwithrlearntechniquesforbuildingandimprovingmachinelearningmodelsfromdatapreparationtomodeltuningevaluationandworkingwithbigdata |