Waves and wave interaction in plasmas:
"This book is written in a lucid and systematic way for advanced postgraduates and researchers studying applied mathematics, plasma physics, nonlinear differential equations, nonlinear optics, and other engineering branches where nonlinear wave phenomena is essential. In sequential order of the...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2023]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "This book is written in a lucid and systematic way for advanced postgraduates and researchers studying applied mathematics, plasma physics, nonlinear differential equations, nonlinear optics, and other engineering branches where nonlinear wave phenomena is essential. In sequential order of the book's development, readers will understand basic plasmas with elementary definitions of magnetized and unmagnetized plasmas, plasma modeling, dusty plasma and quantum plasma. Following which, the book describes linear and nonlinear waves, solitons, shocks and other wave phenomena, while solutions to common nonlinear wave equations are derived via standard techniques. Readers are introduced to elementary perturbation and non-perturbation methods. They will discover several evolution equations in different plasma situations as well as the properties of solitons in those environments. Pertaining to those equations, readers will learn about their higher order corrections, as well as their different forms and solutions in non-planar geometry. The book offers further studies on different types of collisions between solitons in plasma environment, phenomena of soliton turbulence as a consequence of multi-soliton interactions, properties of large amplitude solitary waves which are discovered via non-perturbative Sagdeev's Pseudopotential Approach, as well as the speed and shape of solitons. Finally, the book reveals possible future developments of research in this rich field"-- |
Beschreibung: | Includes index |
Beschreibung: | xiv, 364 Seiten Diagramme 24 cm |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048994978 | ||
003 | DE-604 | ||
005 | 20230928 | ||
007 | t | ||
008 | 230612s2023 |||| |||| 00||| eng d | ||
020 | |z 9789811265334 |9 978-981-126-533-4 | ||
035 | |a (OCoLC)1377689234 | ||
035 | |a (DE-599)BVBBV048994978 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
084 | |a UR 8300 |0 (DE-625)146644: |2 rvk | ||
100 | 1 | |a Chatterjee, Prasanta |e Verfasser |4 aut | |
245 | 1 | 0 | |a Waves and wave interaction in plasmas |c Prasanta Chatterjee, Visva Bharati University, India, Kaushik Roy, Beluti M K M High School, India, Uday Narayan Ghosh, K K M College (A Contituent Unit of Munger University), India |
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2023] | |
300 | |a xiv, 364 Seiten |b Diagramme |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes index | ||
520 | |a "This book is written in a lucid and systematic way for advanced postgraduates and researchers studying applied mathematics, plasma physics, nonlinear differential equations, nonlinear optics, and other engineering branches where nonlinear wave phenomena is essential. In sequential order of the book's development, readers will understand basic plasmas with elementary definitions of magnetized and unmagnetized plasmas, plasma modeling, dusty plasma and quantum plasma. Following which, the book describes linear and nonlinear waves, solitons, shocks and other wave phenomena, while solutions to common nonlinear wave equations are derived via standard techniques. Readers are introduced to elementary perturbation and non-perturbation methods. They will discover several evolution equations in different plasma situations as well as the properties of solitons in those environments. Pertaining to those equations, readers will learn about their higher order corrections, as well as their different forms and solutions in non-planar geometry. The book offers further studies on different types of collisions between solitons in plasma environment, phenomena of soliton turbulence as a consequence of multi-soliton interactions, properties of large amplitude solitary waves which are discovered via non-perturbative Sagdeev's Pseudopotential Approach, as well as the speed and shape of solitons. Finally, the book reveals possible future developments of research in this rich field"-- | ||
650 | 4 | |a Plasma waves | |
650 | 4 | |a Plasma dynamics | |
650 | 4 | |a Nonlinear theories | |
650 | 0 | 7 | |a Plasmawelle |0 (DE-588)4174841-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Plasmawelle |0 (DE-588)4174841-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Roy, Kaushik |e Verfasser |4 aut | |
700 | 1 | |a Ghosh, Uday Narayan |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-126-534-1 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-126-535-8 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034258251&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-034258251 |
Datensatz im Suchindex
_version_ | 1804185253848285184 |
---|---|
adam_text | Contents Preface v Acknowledgments Chapter 1. vii Introduction to Plasmas Introduction........................................................................ Saha Equation and Plasma Temperature.......................... Basic Concepts of Plasma................................................. 1.3.1 Basic dimensionless parameters............................. 1.3.2 Debye length and Debye shielding....................... 1.3.3 Quasineutrality .................................................... 1.3.4 Response time....................................................... 1.3.5 Plasma frequency................................................. 1.3.6 Collisions and coupling limit................................ 1.4 Criteria for Plasma.............................................................. 1.5 High-Temperature Plasmas.............................................. 1.6 Mathematical Description................................................. 1.7 Magnetized Plasmas.......................................................... 1.8 Single Particle Motion in UniformElectric and Magnetic Field.................................................................... 1.9 Fluid Approach................................................................... 1.10 Maxwell s Equations.......................................................... 1.11 Electromagnetic Wave Equationin Free Space.................. 1.12 Plasma Kinetic Theory....................................................... 1.12.1 Distribution function............................................ 1.12.2 Macroscopic
variables............................................. 1.1 1.2 1.3 ix 1 1 2 4 4 4 7 7 8 9 10 10 10 11 14 15 18 20 21 21 22
Waues and Waue Interactions in Plasmas 1.12.3 Maxwellian distribution function.......................... 1.12.4 Non-Maxwellian distribution inplasmas................. 1.12.5 Nonthermal distribution......................................... 1.12.6 Superthermal distribution...................................... 1.12.7 q-nonextensive distribution................................... 1.13 Closure Form of Moment Equation.................................... 1.13.1 Equation of continuity............................................ 1.13.2 Equation of motion............................................... 1.13.3 Equation of energy.................................................. 1.14 Dusty Plasma...................................................................... 1.15 Quantum Plasma................................................................. 1.16 Quantum Plasma Models .................................................. References...................................................................................... Chapter 2. Introduction to Waves in Plasma 2.1 Introduction......................................................................... 2.2 Mathematical Description of Waves.................................. 2.3 Dispersion Relation............................................................. 2.4 Linear Waves in Plasmas.................................................... 2.5 Plasma Oscillation............................................................. 2.6 Electromagnetic Waves....................................................... 2.7 Upper Hybrid
Frequency.................................................... 2.8 Electrostatic Ion Cyclotron Waves................................... 2.9 Lower Hybrid Frequency.................................................... 2.10 Electromagnetic Waves with Bo = 0 ................................. 2.11 Electromagnetic Waves Perpendicular to Bq.................... 2.11.1 Ordinary wave........................................................ 2.11.2 Extraordinary wave................................................ 2.12 Electromagnetic Waves Parallel toBq .............................. 2.13 Hydromagnetic Waves........................................................ 2.13.1 Alfven wave ........................................................... 2.13.2 Magnetosonic wave ............................................... 2.14 Some Acoustic Type of Waves in Plasmas....................... 2.14.1 Electron plasma waves .......................................... 2.14.2 Ion acoustic waves................................................... 2.14.3 Dust acoustic waves................................................ 2.14.4 Dust ion acoustic waves.......................................... 2.15 Nonlinear Wave................................................................... 22 23 23 24 25 28 29 30 32 32 36 39 41 43 43 44 46 50 51 52 53 55 56 58 60 60 61 63 66 66 69 71 72 73 76 77 78
Contents xi Solitary Waves and Solitons............................................... 82 2.16.1 History of solitary waves and solitons.................... 82 2.17 Properties of Solitons.......................................................... 84 References......................................................................................... 85 2.16 Chapter 3. Solution of Nonlinear WaveEquations Nonlinear Waves................................................................ Direct Method ................................................................... 3.2.1 Korteweg-de Vries (KdV) equation ...................... 3.2.2 Cnoidal waves.......................................................... 3.2.3 Modified KdV (MKdV) equation............................ 3.2.4 Schamel-type KdV (S-KdV) equation................... 3.2.5 Burgers’ equation................................................... 3.2.6 KP equation............................................................ 3.2.7 Modified KP equation.............................................. 3.3 Hyperbolic Tangent Method.............................................. 3.3.1 KdV equation......................................................... 3.3.2 Modified KdV equation........................................... 3.3.3 Burgers’ equation................................................... 3.3.4 KdV Burgers’ equation........................................... 3.3.5 KP equation........................................................... 3.4 Tanh-Coth Method............................................................. 3.4.1 KdV
equation.......................................... 3.4.2 Burgers’ equation.................................................... 3.5 Solution of KP Burger Equation ...................................... 3.6 Conservation Laws and Integrals of the Motions.............. 3.6.1 Conserved quantity of KdV equation ................... 3.7 Approximate Analytical Solutions...................................... 3.7.1 Damped KdV equation........................................... 3.7.2 Force KdV equation................................................. 3.7.3 Damped-force KdV equation.................................. 3.8 Multisoliton and Hirota’s Direct Method.......................... 3.8.1 Hirota’s method...................................................... 3.8.2 Multisoliton solution of the KdV equation .... 3.8.3 Multisoliton solution of the KP equation............. References...................................................................................... 3.1 3.2 87 87 87 88 90 93 94 95 96 97 98 100 101 102 103 105 105 106 109 109 112 116 117 117 118 119 121 121 123 127 129
Waves and Wave Interactions in Plasmas xii RPT and Some Evolution Equations 131 4.1 Perturbation Technique ..................................................... 4.2 Reductive Perturbation Technique .................................... 4.3 Korteweg-de Vries (KdV) Equation.................................... 4.4 Modified KdV (MKdV) Equation....................................... 4.5 Gardner’s Equation.............................................................. 4.6 Gardner and Modified Gardner’s (MG) Equation............ 4.7 Damped Forced KdV (DFKdV) Equation........................ 4.8 Damped Forced MKdV (DFMKdV) Equation.................. 4.9 Forced Schamel KdV (SKdV) Equation ........................... 4.10 Burgers’ Equation .............................................................. 4.11 Modified Burgers’ Equation............................................... 4.12 KdV Burgers’ (KdVB) Equation....................................... 4.13 Damped KdVB Equation .................................................. 4.14 Kadomtsev-Petviashvili (KP) Equation ........................... 4.15 Modified KP (МКР) Equation ...................................... . 4.16 Further MKP (FMKP) Equation....................................... 4.17 KP Burgers’ (KPB) Equation............................................ 4.18 Damped KP (DKP) Equation ............................................. 4.19 Zakharov-Kuznetsov (ZK) Equation................................. 4.20 ZK Burgers’ (ZKB) Equation............................................. 4.21 Damped ZK (DZK)
Equation............................................. References...................................................................................... 131 135 137 144 148 150 153 155 159 166 170 173 175 178 181 183 186 189 192 195 197 199 Dressed Soliton andEnvelope Soliton 201 5.1 Dressed Soliton..................................................................... 5.2 Dressed Soliton in a Classical Plasma................................. 5.3 Dressed Soliton in a Dusty Plasma.................................... 5.4 Dressed Soliton in Quantum Plasma................................. 5.5 Dressed Soliton of ZK Equation.......................................... 5.6 Envelope Soliton.................................................................. 5.7 Nonlinear SchrodingerEquation (NLSE)............................ References...................................................................................... 201 201 208 213 218 224 225 238 Chapter 4. Chapter 5. Chapter 6. 6.1 6.2 6.3 Evolution Equations in Nonplanar Geometry 239 Introduction.......................................................................... 239 Basic Equations of Motion in Nonplanar Geometry .... 240 Nonplanar KdV Equation in Classical Plasma................. 244
Contents xiii 6.4 6.5 Nonplanar KdV Equation in Quantum Plasma................. 248 Nonplanar Gardner’s or Modified Gardner’s Equation...................................................................... 250 6.6 Nonplanar KP and KP Burgers’Equation.............................255 6.7 Nonplanar ZK Equation...................................................... 260 6.8 Nonplanar ZKB Equation................................................... 262 References...................................................................................... 264 Chapter 7. Collision of Solitons 265 Introduction.............................................................................. 265 Head-on Collision.................................................................. 265 7.2.1 Head-on collision of solitary waves in planar geometry........................................ 269 7.2.2 Head-on collision of solitons in a Magnetized Quantum Plasma......................................... 274 7.2.3 Head-on collision of magneto-acoustic solitons in spin-1/2 fermionic quantum plasma........ 279 7.2.4 Interaction of DIASWs in nonplanar geometry....................................................... 283 7.3 Oblique Collision................................................................. 287 7.3.1 Oblique collision of DIASWs in quantum plasmas...................................................... 288 7.4 Overtaking Collision................................................................ 294 7.4.1 Overtaking interaction of two solitons and three solitons of EAWs in quantum plasma........ 294 7.5
Soliton Interaction and Soliton Turbulence......................... 300 7.6 Statistical Characteristics of the Wavefield........................ 304 7.7 Plasma Parameters on Soliton Turbulence........................ 309 References......................................................................................... 310 7.1 7.2 Chapter 8. 8.1 8.2 Sagdeev’s Pseudopotential Approach 313 Nonperturbative Approach...................................................... 313 Sagdeev’s Pseudopotential Approach................................. 313 8.2.1 Physical interpretation of Sagdeev’s potential . . . 316 8.2.2 Determination of the range of Alach number . . . 318 8.2.3 Shape of the solitary waves................................ 318 8.2.4 Physical interpretation of double layers...........319 8.2.5 Small amplitude approximation ........................... 320
Waves and Wave Interactions in Plasmas xiv 8.3 Effect of Finite Ion Temperature........................................... 322 8.4 Large-amplitude DASWs............................................................... 324 8.5 Large-amplitude Double Layers.............................................. 329 8.6 Effect of Ion Kinematic Viscosity........................................... 334 8.7 DIASWs in Magnetized Plasma.............................................. 340 8.8 Solitary Kinetic Alfven Waves................................................. 346 8.9 Collapse of EA Solitary Waves .............................................. 350 8.10 Collapse of DASWs in Presence of Trapped Ions .................. 353 References.................................................................................................. 357 Chapter 9. Index Conclusion and Future Scopes 359 363
|
adam_txt |
Contents Preface v Acknowledgments Chapter 1. vii Introduction to Plasmas Introduction. Saha Equation and Plasma Temperature. Basic Concepts of Plasma. 1.3.1 Basic dimensionless parameters. 1.3.2 Debye length and Debye shielding. 1.3.3 Quasineutrality . 1.3.4 Response time. 1.3.5 Plasma frequency. 1.3.6 Collisions and coupling limit. 1.4 Criteria for Plasma. 1.5 High-Temperature Plasmas. 1.6 Mathematical Description. 1.7 Magnetized Plasmas. 1.8 Single Particle Motion in UniformElectric and Magnetic Field. 1.9 Fluid Approach. 1.10 Maxwell's Equations. 1.11 Electromagnetic Wave Equationin Free Space. 1.12 Plasma Kinetic Theory. 1.12.1 Distribution function. 1.12.2 Macroscopic
variables. 1.1 1.2 1.3 ix 1 1 2 4 4 4 7 7 8 9 10 10 10 11 14 15 18 20 21 21 22
Waues and Waue Interactions in Plasmas 1.12.3 Maxwellian distribution function. 1.12.4 Non-Maxwellian distribution inplasmas. 1.12.5 Nonthermal distribution. 1.12.6 Superthermal distribution. 1.12.7 q-nonextensive distribution. 1.13 Closure Form of Moment Equation. 1.13.1 Equation of continuity. 1.13.2 Equation of motion. 1.13.3 Equation of energy. 1.14 Dusty Plasma. 1.15 Quantum Plasma. 1.16 Quantum Plasma Models . References. Chapter 2. Introduction to Waves in Plasma 2.1 Introduction. 2.2 Mathematical Description of Waves. 2.3 Dispersion Relation. 2.4 Linear Waves in Plasmas. 2.5 Plasma Oscillation. 2.6 Electromagnetic Waves. 2.7 Upper Hybrid
Frequency. 2.8 Electrostatic Ion Cyclotron Waves. 2.9 Lower Hybrid Frequency. 2.10 Electromagnetic Waves with Bo = 0 . 2.11 Electromagnetic Waves Perpendicular to Bq. 2.11.1 Ordinary wave. 2.11.2 Extraordinary wave. 2.12 Electromagnetic Waves Parallel toBq . 2.13 Hydromagnetic Waves. 2.13.1 Alfven wave . 2.13.2 Magnetosonic wave . 2.14 Some Acoustic Type of Waves in Plasmas. 2.14.1 Electron plasma waves . 2.14.2 Ion acoustic waves. 2.14.3 Dust acoustic waves. 2.14.4 Dust ion acoustic waves. 2.15 Nonlinear Wave. 22 23 23 24 25 28 29 30 32 32 36 39 41 43 43 44 46 50 51 52 53 55 56 58 60 60 61 63 66 66 69 71 72 73 76 77 78
Contents xi Solitary Waves and Solitons. 82 2.16.1 History of solitary waves and solitons. 82 2.17 Properties of Solitons. 84 References. 85 2.16 Chapter 3. Solution of Nonlinear WaveEquations Nonlinear Waves. Direct Method . 3.2.1 Korteweg-de Vries (KdV) equation . 3.2.2 Cnoidal waves. 3.2.3 Modified KdV (MKdV) equation. 3.2.4 Schamel-type KdV (S-KdV) equation. 3.2.5 Burgers’ equation. 3.2.6 KP equation. 3.2.7 Modified KP equation. 3.3 Hyperbolic Tangent Method. 3.3.1 KdV equation. 3.3.2 Modified KdV equation. 3.3.3 Burgers’ equation. 3.3.4 KdV Burgers’ equation. 3.3.5 KP equation. 3.4 Tanh-Coth Method. 3.4.1 KdV
equation. 3.4.2 Burgers’ equation. 3.5 Solution of KP Burger Equation . 3.6 Conservation Laws and Integrals of the Motions. 3.6.1 Conserved quantity of KdV equation . 3.7 Approximate Analytical Solutions. 3.7.1 Damped KdV equation. 3.7.2 Force KdV equation. 3.7.3 Damped-force KdV equation. 3.8 Multisoliton and Hirota’s Direct Method. 3.8.1 Hirota’s method. 3.8.2 Multisoliton solution of the KdV equation . 3.8.3 Multisoliton solution of the KP equation. References. 3.1 3.2 87 87 87 88 90 93 94 95 96 97 98 100 101 102 103 105 105 106 109 109 112 116 117 117 118 119 121 121 123 127 129
Waves and Wave Interactions in Plasmas xii RPT and Some Evolution Equations 131 4.1 Perturbation Technique . 4.2 Reductive Perturbation Technique . 4.3 Korteweg-de Vries (KdV) Equation. 4.4 Modified KdV (MKdV) Equation. 4.5 Gardner’s Equation. 4.6 Gardner and Modified Gardner’s (MG) Equation. 4.7 Damped Forced KdV (DFKdV) Equation. 4.8 Damped Forced MKdV (DFMKdV) Equation. 4.9 Forced Schamel KdV (SKdV) Equation . 4.10 Burgers’ Equation . 4.11 Modified Burgers’ Equation. 4.12 KdV Burgers’ (KdVB) Equation. 4.13 Damped KdVB Equation . 4.14 Kadomtsev-Petviashvili (KP) Equation . 4.15 Modified KP (МКР) Equation . . 4.16 Further MKP (FMKP) Equation. 4.17 KP Burgers’ (KPB) Equation. 4.18 Damped KP (DKP) Equation . 4.19 Zakharov-Kuznetsov (ZK) Equation. 4.20 ZK Burgers’ (ZKB) Equation. 4.21 Damped ZK (DZK)
Equation. References. 131 135 137 144 148 150 153 155 159 166 170 173 175 178 181 183 186 189 192 195 197 199 Dressed Soliton andEnvelope Soliton 201 5.1 Dressed Soliton. 5.2 Dressed Soliton in a Classical Plasma. 5.3 Dressed Soliton in a Dusty Plasma. 5.4 Dressed Soliton in Quantum Plasma. 5.5 Dressed Soliton of ZK Equation. 5.6 Envelope Soliton. 5.7 Nonlinear SchrodingerEquation (NLSE). References. 201 201 208 213 218 224 225 238 Chapter 4. Chapter 5. Chapter 6. 6.1 6.2 6.3 Evolution Equations in Nonplanar Geometry 239 Introduction. 239 Basic Equations of Motion in Nonplanar Geometry . 240 Nonplanar KdV Equation in Classical Plasma. 244
Contents xiii 6.4 6.5 Nonplanar KdV Equation in Quantum Plasma. 248 Nonplanar Gardner’s or Modified Gardner’s Equation. 250 6.6 Nonplanar KP and KP Burgers’Equation.255 6.7 Nonplanar ZK Equation. 260 6.8 Nonplanar ZKB Equation. 262 References. 264 Chapter 7. Collision of Solitons 265 Introduction. 265 Head-on Collision. 265 7.2.1 Head-on collision of solitary waves in planar geometry. 269 7.2.2 Head-on collision of solitons in a Magnetized Quantum Plasma. 274 7.2.3 Head-on collision of magneto-acoustic solitons in spin-1/2 fermionic quantum plasma. 279 7.2.4 Interaction of DIASWs in nonplanar geometry. 283 7.3 Oblique Collision. 287 7.3.1 Oblique collision of DIASWs in quantum plasmas. 288 7.4 Overtaking Collision. 294 7.4.1 Overtaking interaction of two solitons and three solitons of EAWs in quantum plasma. 294 7.5
Soliton Interaction and Soliton Turbulence. 300 7.6 Statistical Characteristics of the Wavefield. 304 7.7 Plasma Parameters on Soliton Turbulence. 309 References. 310 7.1 7.2 Chapter 8. 8.1 8.2 Sagdeev’s Pseudopotential Approach 313 Nonperturbative Approach. 313 Sagdeev’s Pseudopotential Approach. 313 8.2.1 Physical interpretation of Sagdeev’s potential . . . 316 8.2.2 Determination of the range of Alach number . . . 318 8.2.3 Shape of the solitary waves. 318 8.2.4 Physical interpretation of double layers.319 8.2.5 Small amplitude approximation . 320
Waves and Wave Interactions in Plasmas xiv 8.3 Effect of Finite Ion Temperature. 322 8.4 Large-amplitude DASWs. 324 8.5 Large-amplitude Double Layers. 329 8.6 Effect of Ion Kinematic Viscosity. 334 8.7 DIASWs in Magnetized Plasma. 340 8.8 Solitary Kinetic Alfven Waves. 346 8.9 Collapse of EA Solitary Waves . 350 8.10 Collapse of DASWs in Presence of Trapped Ions . 353 References. 357 Chapter 9. Index Conclusion and Future Scopes 359 363 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Chatterjee, Prasanta Roy, Kaushik Ghosh, Uday Narayan |
author_facet | Chatterjee, Prasanta Roy, Kaushik Ghosh, Uday Narayan |
author_role | aut aut aut |
author_sort | Chatterjee, Prasanta |
author_variant | p c pc k r kr u n g un ung |
building | Verbundindex |
bvnumber | BV048994978 |
classification_rvk | UR 8300 |
ctrlnum | (OCoLC)1377689234 (DE-599)BVBBV048994978 |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03310nam a2200421 c 4500</leader><controlfield tag="001">BV048994978</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230928 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230612s2023 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789811265334</subfield><subfield code="9">978-981-126-533-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1377689234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048994978</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UR 8300</subfield><subfield code="0">(DE-625)146644:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chatterjee, Prasanta</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Waves and wave interaction in plasmas</subfield><subfield code="c">Prasanta Chatterjee, Visva Bharati University, India, Kaushik Roy, Beluti M K M High School, India, Uday Narayan Ghosh, K K M College (A Contituent Unit of Munger University), India</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 364 Seiten</subfield><subfield code="b">Diagramme</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book is written in a lucid and systematic way for advanced postgraduates and researchers studying applied mathematics, plasma physics, nonlinear differential equations, nonlinear optics, and other engineering branches where nonlinear wave phenomena is essential. In sequential order of the book's development, readers will understand basic plasmas with elementary definitions of magnetized and unmagnetized plasmas, plasma modeling, dusty plasma and quantum plasma. Following which, the book describes linear and nonlinear waves, solitons, shocks and other wave phenomena, while solutions to common nonlinear wave equations are derived via standard techniques. Readers are introduced to elementary perturbation and non-perturbation methods. They will discover several evolution equations in different plasma situations as well as the properties of solitons in those environments. Pertaining to those equations, readers will learn about their higher order corrections, as well as their different forms and solutions in non-planar geometry. The book offers further studies on different types of collisions between solitons in plasma environment, phenomena of soliton turbulence as a consequence of multi-soliton interactions, properties of large amplitude solitary waves which are discovered via non-perturbative Sagdeev's Pseudopotential Approach, as well as the speed and shape of solitons. Finally, the book reveals possible future developments of research in this rich field"--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plasmawelle</subfield><subfield code="0">(DE-588)4174841-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Plasmawelle</subfield><subfield code="0">(DE-588)4174841-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roy, Kaushik</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghosh, Uday Narayan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-126-534-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-126-535-8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034258251&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034258251</subfield></datafield></record></collection> |
id | DE-604.BV048994978 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:08:22Z |
indexdate | 2024-07-10T09:52:18Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034258251 |
oclc_num | 1377689234 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | xiv, 364 Seiten Diagramme 24 cm |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | World Scientific |
record_format | marc |
spelling | Chatterjee, Prasanta Verfasser aut Waves and wave interaction in plasmas Prasanta Chatterjee, Visva Bharati University, India, Kaushik Roy, Beluti M K M High School, India, Uday Narayan Ghosh, K K M College (A Contituent Unit of Munger University), India New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2023] xiv, 364 Seiten Diagramme 24 cm txt rdacontent n rdamedia nc rdacarrier Includes index "This book is written in a lucid and systematic way for advanced postgraduates and researchers studying applied mathematics, plasma physics, nonlinear differential equations, nonlinear optics, and other engineering branches where nonlinear wave phenomena is essential. In sequential order of the book's development, readers will understand basic plasmas with elementary definitions of magnetized and unmagnetized plasmas, plasma modeling, dusty plasma and quantum plasma. Following which, the book describes linear and nonlinear waves, solitons, shocks and other wave phenomena, while solutions to common nonlinear wave equations are derived via standard techniques. Readers are introduced to elementary perturbation and non-perturbation methods. They will discover several evolution equations in different plasma situations as well as the properties of solitons in those environments. Pertaining to those equations, readers will learn about their higher order corrections, as well as their different forms and solutions in non-planar geometry. The book offers further studies on different types of collisions between solitons in plasma environment, phenomena of soliton turbulence as a consequence of multi-soliton interactions, properties of large amplitude solitary waves which are discovered via non-perturbative Sagdeev's Pseudopotential Approach, as well as the speed and shape of solitons. Finally, the book reveals possible future developments of research in this rich field"-- Plasma waves Plasma dynamics Nonlinear theories Plasmawelle (DE-588)4174841-4 gnd rswk-swf Plasmawelle (DE-588)4174841-4 s DE-604 Roy, Kaushik Verfasser aut Ghosh, Uday Narayan Verfasser aut Erscheint auch als Online-Ausgabe 978-981-126-534-1 Erscheint auch als Online-Ausgabe 978-981-126-535-8 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034258251&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Chatterjee, Prasanta Roy, Kaushik Ghosh, Uday Narayan Waves and wave interaction in plasmas Plasma waves Plasma dynamics Nonlinear theories Plasmawelle (DE-588)4174841-4 gnd |
subject_GND | (DE-588)4174841-4 |
title | Waves and wave interaction in plasmas |
title_auth | Waves and wave interaction in plasmas |
title_exact_search | Waves and wave interaction in plasmas |
title_exact_search_txtP | Waves and wave interaction in plasmas |
title_full | Waves and wave interaction in plasmas Prasanta Chatterjee, Visva Bharati University, India, Kaushik Roy, Beluti M K M High School, India, Uday Narayan Ghosh, K K M College (A Contituent Unit of Munger University), India |
title_fullStr | Waves and wave interaction in plasmas Prasanta Chatterjee, Visva Bharati University, India, Kaushik Roy, Beluti M K M High School, India, Uday Narayan Ghosh, K K M College (A Contituent Unit of Munger University), India |
title_full_unstemmed | Waves and wave interaction in plasmas Prasanta Chatterjee, Visva Bharati University, India, Kaushik Roy, Beluti M K M High School, India, Uday Narayan Ghosh, K K M College (A Contituent Unit of Munger University), India |
title_short | Waves and wave interaction in plasmas |
title_sort | waves and wave interaction in plasmas |
topic | Plasma waves Plasma dynamics Nonlinear theories Plasmawelle (DE-588)4174841-4 gnd |
topic_facet | Plasma waves Plasma dynamics Nonlinear theories Plasmawelle |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034258251&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT chatterjeeprasanta wavesandwaveinteractioninplasmas AT roykaushik wavesandwaveinteractioninplasmas AT ghoshudaynarayan wavesandwaveinteractioninplasmas |