Data-driven fluid mechanics: combining first principles and machine learning : based on a von Karman Institute lecture series
Data-driven methods have become an essential part of the methodological portfolio of fluid dynamicists, motivating students and practitioners to gather practical knowledge from a diverse range of disciplines. These fields include computer science, statistics, optimization, signal processing, pattern...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore
Cambridge University Press
2023
|
Schlagworte: | |
Zusammenfassung: | Data-driven methods have become an essential part of the methodological portfolio of fluid dynamicists, motivating students and practitioners to gather practical knowledge from a diverse range of disciplines. These fields include computer science, statistics, optimization, signal processing, pattern recognition, nonlinear dynamics, and control. Fluid mechanics is historically a big data field and offers a fertile ground for developing and applying data-driven methods, while also providing valuable shortcuts, constraints, and interpretations based on its powerful connections to basic physics. Thus, hybrid approaches that leverage both methods based on data as well as fundamental principles are the focus of active and exciting research. Originating from a one-week lecture series course by the von Karman Institute for Fluid Dynamics, this book presents an overview and a pedagogical treatment of some of the data-driven and machine learning tools that are leading research advancements in model-order reduction, system identification, flow control, and data-driven turbulence closures |
Beschreibung: | xviii, 448 Seiten Illustrationen, Diagramme |
ISBN: | 9781108842143 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048991139 | ||
003 | DE-604 | ||
005 | 20240125 | ||
007 | t | ||
008 | 230607s2023 a||| |||| 00||| eng d | ||
020 | |a 9781108842143 |9 978-1-108-84214-3 | ||
035 | |a (OCoLC)1372498282 | ||
035 | |a (DE-599)BVBBV048991139 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-M49 | ||
082 | 0 | |a 532 | |
084 | |a UF 4000 |0 (DE-625)145577: |2 rvk | ||
084 | |a MTA 300 |2 stub | ||
084 | |a MTA 009 |2 stub | ||
245 | 1 | 0 | |a Data-driven fluid mechanics |b combining first principles and machine learning : based on a von Karman Institute lecture series |c edited by Miguel A. Mendez (von Karman Institute for Fluid Dynamics, Belgium), Andrea Ianiro (Universidad Carlos III de Madrid), Bernd R. Noack (Harbin Institute of Technology, China), Steven L. Brunton (University of Washington) |
264 | 1 | |a Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore |b Cambridge University Press |c 2023 | |
300 | |a xviii, 448 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | |a Data-driven methods have become an essential part of the methodological portfolio of fluid dynamicists, motivating students and practitioners to gather practical knowledge from a diverse range of disciplines. These fields include computer science, statistics, optimization, signal processing, pattern recognition, nonlinear dynamics, and control. Fluid mechanics is historically a big data field and offers a fertile ground for developing and applying data-driven methods, while also providing valuable shortcuts, constraints, and interpretations based on its powerful connections to basic physics. Thus, hybrid approaches that leverage both methods based on data as well as fundamental principles are the focus of active and exciting research. Originating from a one-week lecture series course by the von Karman Institute for Fluid Dynamics, this book presents an overview and a pedagogical treatment of some of the data-driven and machine learning tools that are leading research advancements in model-order reduction, system identification, flow control, and data-driven turbulence closures | ||
650 | 4 | |a Fluid mechanics / Data processing | |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 0 | 1 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mendez, Miguel Alfonso |d 1988- |0 (DE-588)1281465135 |4 edt | |
700 | 1 | |a Ianiro, Andrea |0 (DE-588)1281465321 |4 edt | |
700 | 1 | |a Noack, Bernd R. |d 1966- |0 (DE-588)172554446 |4 edt | |
700 | 1 | |a Brunton, Steven L. |d 1984- |0 (DE-588)1125029617 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-108-89621-4 |
999 | |a oai:aleph.bib-bvb.de:BVB01-034254481 |
Datensatz im Suchindex
_version_ | 1804185246902517760 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Mendez, Miguel Alfonso 1988- Ianiro, Andrea Noack, Bernd R. 1966- Brunton, Steven L. 1984- |
author2_role | edt edt edt edt |
author2_variant | m a m ma mam a i ai b r n br brn s l b sl slb |
author_GND | (DE-588)1281465135 (DE-588)1281465321 (DE-588)172554446 (DE-588)1125029617 |
author_facet | Mendez, Miguel Alfonso 1988- Ianiro, Andrea Noack, Bernd R. 1966- Brunton, Steven L. 1984- |
building | Verbundindex |
bvnumber | BV048991139 |
classification_rvk | UF 4000 |
classification_tum | MTA 300 MTA 009 |
ctrlnum | (OCoLC)1372498282 (DE-599)BVBBV048991139 |
dewey-full | 532 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532 |
dewey-search | 532 |
dewey-sort | 3532 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02929nam a2200433zc 4500</leader><controlfield tag="001">BV048991139</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240125 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230607s2023 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108842143</subfield><subfield code="9">978-1-108-84214-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1372498282</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048991139</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-M49</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4000</subfield><subfield code="0">(DE-625)145577:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 300</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 009</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data-driven fluid mechanics</subfield><subfield code="b">combining first principles and machine learning : based on a von Karman Institute lecture series</subfield><subfield code="c">edited by Miguel A. Mendez (von Karman Institute for Fluid Dynamics, Belgium), Andrea Ianiro (Universidad Carlos III de Madrid), Bernd R. Noack (Harbin Institute of Technology, China), Steven L. Brunton (University of Washington)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 448 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Data-driven methods have become an essential part of the methodological portfolio of fluid dynamicists, motivating students and practitioners to gather practical knowledge from a diverse range of disciplines. These fields include computer science, statistics, optimization, signal processing, pattern recognition, nonlinear dynamics, and control. Fluid mechanics is historically a big data field and offers a fertile ground for developing and applying data-driven methods, while also providing valuable shortcuts, constraints, and interpretations based on its powerful connections to basic physics. Thus, hybrid approaches that leverage both methods based on data as well as fundamental principles are the focus of active and exciting research. Originating from a one-week lecture series course by the von Karman Institute for Fluid Dynamics, this book presents an overview and a pedagogical treatment of some of the data-driven and machine learning tools that are leading research advancements in model-order reduction, system identification, flow control, and data-driven turbulence closures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid mechanics / Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mendez, Miguel Alfonso</subfield><subfield code="d">1988-</subfield><subfield code="0">(DE-588)1281465135</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ianiro, Andrea</subfield><subfield code="0">(DE-588)1281465321</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noack, Bernd R.</subfield><subfield code="d">1966-</subfield><subfield code="0">(DE-588)172554446</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brunton, Steven L.</subfield><subfield code="d">1984-</subfield><subfield code="0">(DE-588)1125029617</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-108-89621-4</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034254481</subfield></datafield></record></collection> |
id | DE-604.BV048991139 |
illustrated | Illustrated |
index_date | 2024-07-03T22:07:11Z |
indexdate | 2024-07-10T09:52:11Z |
institution | BVB |
isbn | 9781108842143 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034254481 |
oclc_num | 1372498282 |
open_access_boolean | |
owner | DE-703 DE-M49 DE-BY-TUM |
owner_facet | DE-703 DE-M49 DE-BY-TUM |
physical | xviii, 448 Seiten Illustrationen, Diagramme |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Data-driven fluid mechanics combining first principles and machine learning : based on a von Karman Institute lecture series edited by Miguel A. Mendez (von Karman Institute for Fluid Dynamics, Belgium), Andrea Ianiro (Universidad Carlos III de Madrid), Bernd R. Noack (Harbin Institute of Technology, China), Steven L. Brunton (University of Washington) Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore Cambridge University Press 2023 xviii, 448 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Data-driven methods have become an essential part of the methodological portfolio of fluid dynamicists, motivating students and practitioners to gather practical knowledge from a diverse range of disciplines. These fields include computer science, statistics, optimization, signal processing, pattern recognition, nonlinear dynamics, and control. Fluid mechanics is historically a big data field and offers a fertile ground for developing and applying data-driven methods, while also providing valuable shortcuts, constraints, and interpretations based on its powerful connections to basic physics. Thus, hybrid approaches that leverage both methods based on data as well as fundamental principles are the focus of active and exciting research. Originating from a one-week lecture series course by the von Karman Institute for Fluid Dynamics, this book presents an overview and a pedagogical treatment of some of the data-driven and machine learning tools that are leading research advancements in model-order reduction, system identification, flow control, and data-driven turbulence closures Fluid mechanics / Data processing Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf Big Data (DE-588)4802620-7 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 s Big Data (DE-588)4802620-7 s DE-604 Mendez, Miguel Alfonso 1988- (DE-588)1281465135 edt Ianiro, Andrea (DE-588)1281465321 edt Noack, Bernd R. 1966- (DE-588)172554446 edt Brunton, Steven L. 1984- (DE-588)1125029617 edt Erscheint auch als Online-Ausgabe 978-1-108-89621-4 |
spellingShingle | Data-driven fluid mechanics combining first principles and machine learning : based on a von Karman Institute lecture series Fluid mechanics / Data processing Strömungsmechanik (DE-588)4077970-1 gnd Big Data (DE-588)4802620-7 gnd |
subject_GND | (DE-588)4077970-1 (DE-588)4802620-7 |
title | Data-driven fluid mechanics combining first principles and machine learning : based on a von Karman Institute lecture series |
title_auth | Data-driven fluid mechanics combining first principles and machine learning : based on a von Karman Institute lecture series |
title_exact_search | Data-driven fluid mechanics combining first principles and machine learning : based on a von Karman Institute lecture series |
title_exact_search_txtP | Data-driven fluid mechanics combining first principles and machine learning : based on a von Karman Institute lecture series |
title_full | Data-driven fluid mechanics combining first principles and machine learning : based on a von Karman Institute lecture series edited by Miguel A. Mendez (von Karman Institute for Fluid Dynamics, Belgium), Andrea Ianiro (Universidad Carlos III de Madrid), Bernd R. Noack (Harbin Institute of Technology, China), Steven L. Brunton (University of Washington) |
title_fullStr | Data-driven fluid mechanics combining first principles and machine learning : based on a von Karman Institute lecture series edited by Miguel A. Mendez (von Karman Institute for Fluid Dynamics, Belgium), Andrea Ianiro (Universidad Carlos III de Madrid), Bernd R. Noack (Harbin Institute of Technology, China), Steven L. Brunton (University of Washington) |
title_full_unstemmed | Data-driven fluid mechanics combining first principles and machine learning : based on a von Karman Institute lecture series edited by Miguel A. Mendez (von Karman Institute for Fluid Dynamics, Belgium), Andrea Ianiro (Universidad Carlos III de Madrid), Bernd R. Noack (Harbin Institute of Technology, China), Steven L. Brunton (University of Washington) |
title_short | Data-driven fluid mechanics |
title_sort | data driven fluid mechanics combining first principles and machine learning based on a von karman institute lecture series |
title_sub | combining first principles and machine learning : based on a von Karman Institute lecture series |
topic | Fluid mechanics / Data processing Strömungsmechanik (DE-588)4077970-1 gnd Big Data (DE-588)4802620-7 gnd |
topic_facet | Fluid mechanics / Data processing Strömungsmechanik Big Data |
work_keys_str_mv | AT mendezmiguelalfonso datadrivenfluidmechanicscombiningfirstprinciplesandmachinelearningbasedonavonkarmaninstitutelectureseries AT ianiroandrea datadrivenfluidmechanicscombiningfirstprinciplesandmachinelearningbasedonavonkarmaninstitutelectureseries AT noackberndr datadrivenfluidmechanicscombiningfirstprinciplesandmachinelearningbasedonavonkarmaninstitutelectureseries AT bruntonstevenl datadrivenfluidmechanicscombiningfirstprinciplesandmachinelearningbasedonavonkarmaninstitutelectureseries |